Loading...
Please wait, while we are loading the content...
A Confrontation Decision-Making Method with Deep Reinforcement Learning and Knowledge Transfer for Multi-Agent System
Content Provider | MDPI |
---|---|
Author | Hu, Chunyang |
Copyright Year | 2020 |
Description | In this paper, deep reinforcement learning (DRL) and knowledge transfer are used to achieve the effective control of the learning agent for the confrontation in the multi-agent systems. Firstly, a multi-agent Deep Deterministic Policy Gradient (DDPG) algorithm with parameter sharing is proposed to achieve confrontation decision-making of multi-agent. In the process of training, the information of other agents is introduced to the critic network to improve the strategy of confrontation. The parameter sharing mechanism can reduce the loss of experience storage. In the DDPG algorithm, we use four neural networks to generate real-time action and Q-value function respectively and use a momentum mechanism to optimize the training process to accelerate the convergence rate for the neural network. Secondly, this paper introduces an auxiliary controller using a policy-based reinforcement learning (RL) method to achieve the assistant decision-making for the game agent. In addition, an effective reward function is used to help agents balance losses of enemies and our side. Furthermore, this paper also uses the knowledge transfer method to extend the learning model to more complex scenes and improve the generalization of the proposed confrontation model. Two confrontation decision-making experiments are designed to verify the effectiveness of the proposed method. In a small-scale task scenario, the trained agent can successfully learn to fight with the competitors and achieve a good winning rate. For large-scale confrontation scenarios, the knowledge transfer method can gradually improve the decision-making level of the learning agent. |
Starting Page | 631 |
e-ISSN | 20738994 |
DOI | 10.3390/sym12040631 |
Journal | Symmetry |
Issue Number | 4 |
Volume Number | 12 |
Language | English |
Publisher | MDPI |
Publisher Date | 2020-04-16 |
Access Restriction | Open |
Subject Keyword | Symmetry Industrial Engineering Deep Deterministic Policy Gradient Policy-based Rl Knowledge Transfer Momentum Mechanism Multi-agent Systems |
Content Type | Text |
Resource Type | Article |