Loading...
Please wait, while we are loading the content...
Similar Documents
Research on Thermal Error Modeling of Motorized Spindle Based on BP Neural Network Optimized by Beetle Antennae Search Algorithm
| Content Provider | MDPI |
|---|---|
| Author | Li, Zhaolong Zhu, Bo Dai, Ye Zhu, Wenming Wang, Qinghai Wang, Baodong |
| Copyright Year | 2021 |
| Description | High-speed motorized spindle heating will produce thermal error, which is an important factor affecting the machining accuracy of machine tools. The thermal error model of high-speed motorized spindles can compensate for thermal error and improve machining accuracy effectively. In order to confirm the high precision thermal error model, Beetle antennae search algorithm (BAS) is proposed to optimize the thermal error prediction model of motorized spindle based on BP neural network. Through the thermal characteristic experiment, the A02 motorized spindle is used as the research object to obtain the temperature and axial thermal drift data of the motorized spindle at different speeds. Using fuzzy clustering and grey relational analysis to screen temperature-sensitive points. Beetle antennae search algorithm (BAS) is used to optimize the weights and thresholds of the BP neural network. Finally, the BAS-BP thermal error prediction model is established. Compared with BP and GA-BP models, the results show that BAS-BP has higher prediction accuracy than BP and GA-BP models at different speeds. Therefore, the BAS-BP model is suitable for prediction and compensation of spindle thermal error. |
| Starting Page | 286 |
| e-ISSN | 20751702 |
| DOI | 10.3390/machines9110286 |
| Journal | Machines |
| Issue Number | 11 |
| Volume Number | 9 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2021-11-12 |
| Access Restriction | Open |
| Subject Keyword | Machines Manufacturing Engineering High-speed Motorized Spindle Thermal Drift Temperature-sensitive Points Beetle Antennae Search Algorithm Thermal Error Modeling |
| Content Type | Text |
| Resource Type | Article |