Loading...
Please wait, while we are loading the content...
Similar Documents
Analysis of the Northern Hemisphere Atmospheric Circulation Response to Arctic Ice Reduction Based on Simulation Results
Content Provider | MDPI |
---|---|
Author | Platov, Gennady Krupchatnikov, Vladimir Gradov, Viacheslav Borovko, Irina Volodin, Evgeny |
Copyright Year | 2021 |
Description | The amplified warming of the Arctic is one of several factors influencing atmospheric dynamics. In this work, we consider a series of numerical experiments to identify the role of Arctic sea ice reduction in affecting climate trends in the Northern Hemisphere. With this aim in mind, we use two independent mechanisms of ice reduction. The first is traditionally associated with increasing the concentration of carbon dioxide in the atmosphere from the historic level of 360 ppm to 450 ppm and 600 ppm. This growth increases air temperature and decreases the ice volume. The second mechanism is associated with a reduction in the reflectivity of ice and snow. We assume that comparing the results of these two experiments allows us to judge the direct role of ice reduction. The most prominent consequences of ice reduction, as a result, are the weakening of temperature gradient at the tropopause level in mid-latitudes; the slower zonal wind at 50–60 |
Starting Page | 373 |
e-ISSN | 20763263 |
DOI | 10.3390/geosciences11090373 |
Journal | Geosciences |
Issue Number | 9 |
Volume Number | 11 |
Language | English |
Publisher | MDPI |
Publisher Date | 2021-09-04 |
Access Restriction | Open |
Subject Keyword | Geosciences Atmospheric Sciences Sea Ice Atmospheric Circulation Rossby Waves Climate Changes Arctic Numerical Modeling |
Content Type | Text |
Resource Type | Article |