Loading...
Please wait, while we are loading the content...
Similar Documents
An Open-Source Code for Fluid Flow Simulations in Unconventional Fractured Reservoirs
| Content Provider | MDPI |
|---|---|
| Author | Wang, Bin Fidelibus, Corrado |
| Copyright Year | 2021 |
| Description | In this article, an open-source code for the simulation of fluid flow, including adsorption, transport, and indirect hydromechanical coupling in unconventional fractured reservoirs is described. The code leverages cutting-edge numerical modeling capabilities like automatic differentiation, stochastic fracture modeling, multicontinuum modeling, and discrete fracture models. In the fluid mass balance equation, specific physical mechanisms, unique to organic-rich source rocks, are included, like an adsorption isotherm, a dynamic permeability-correction function, and an Embedded Discrete Fracture Model (EDFM) with fracture-to-well connectivity. The code is validated against an industrial simulator and applied for a study of the performance of the Barnett shale reservoir, where adsorption, gas slippage, diffusion, indirect hydromechanical coupling, and propped fractures are considered. It is the first open-source code available to facilitate the modeling and production optimization of fractured shale-gas reservoirs. The modular design also facilitates rapid prototyping and demonstration of new models. This article also contains a quantitative analysis of the accuracy and limitations of EDFM for gas production simulation in unconventional fractured reservoirs. |
| Starting Page | 106 |
| e-ISSN | 20763263 |
| DOI | 10.3390/geosciences11020106 |
| Journal | Geosciences |
| Issue Number | 2 |
| Volume Number | 11 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2021-02-22 |
| Access Restriction | Open |
| Subject Keyword | Geosciences Petroleum Engineering Fluid Flow in Unconventional Reservoirs Shale Gas Production Edfm Barnett Shale |
| Content Type | Text |
| Resource Type | Article |