Loading...
Please wait, while we are loading the content...
Similar Documents
Application of Machine Learning Methods on Patient Reported Outcome Measurements for Predicting Outcomes: A Literature Review
| Content Provider | MDPI |
|---|---|
| Author | Verma, Deepika Bach, Kerstin Mork, Paul Jarle |
| Copyright Year | 2021 |
| Description | The field of patient-centred healthcare has, during recent years, adopted machine learning and data science techniques to support clinical decision making and improve patient outcomes. We conduct a literature review with the aim of summarising the existing methodologies that apply machine learning methods on patient-reported outcome measures datasets for predicting clinical outcomes to support further research and development within the field. We identify 15 articles published within the last decade that employ machine learning methods at various stages of exploiting datasets consisting of patient-reported outcome measures for predicting clinical outcomes, presenting promising research and demonstrating the utility of patient-reported outcome measures data for developmental research, personalised treatment and precision medicine with the help of machine learning-based decision-support systems. Furthermore, we identify and discuss the gaps and challenges, such as inconsistency in reporting the results across different articles, use of different evaluation metrics, legal aspects of using the data, and data unavailability, among others, which can potentially be addressed in future studies. |
| Starting Page | 56 |
| e-ISSN | 22279709 |
| DOI | 10.3390/informatics8030056 |
| Journal | Informatics |
| Issue Number | 3 |
| Volume Number | 8 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2021-08-25 |
| Access Restriction | Open |
| Subject Keyword | Informatics Machine Learning Patient-reported Outcome Measurements Self-reported Measures Patient Outcomes Outcome Prediction Clinical Decision Making Decision-support Systems Health Informatics |
| Content Type | Text |
| Resource Type | Article |