Loading...
Please wait, while we are loading the content...
Similar Documents
An Aqueous Exfoliation of $WO_{3}$ as a Route for Counterions Fabrication—Improved Photocatalyticand Capacitive Properties of $Polyaniline/WO_{3}$ Composite
| Content Provider | MDPI |
|---|---|
| Author | Konrad, Trzciński Szkoda, Mariusz Zarach, Zuzanna Nowak, Andrzej P. |
| Copyright Year | 2020 |
| Description | In this paper, we demonstrate a novel, electrochemical route of polyaniline/tungsten oxide (PANI)/WO3) film preparation. Polyaniline composite film was electrodeposited on the FTO (fluorine-doped tin oxide) substrate from the aqueous electrolyte that contained aniline (monomer) and exfoliated WO3 as a source of counter ions. The chemical nature of WO3 incorporated in the polyaniline matrix was investigated using X-ray photoelectron spectroscopy. SEM (scanning electron microscopy) showed the impact of WO3 presence on the morphology of polyaniline film. PANI/WO3film was tested as an electrode material in an acidic electrolyte. Performed measurements showed the electroactivity of both components and enhanced electrochemical stability of PANI/WO3 in comparison with PANI/Cl. Thus, PANI/WO3 electrodes were utilized to construct the symmetric supercapacitors. The impact of capacitive and diffusion-controlled processes on the mechanism of electrical energy storage was quantitatively determined. Devices exhibited high electrochemical capacity of 135 mF cm−2 (180 F g−1) and satisfactory retention rate of 70% after 10,000 cycles. The electrochemical energy storage device exhibited 1075.6 W kg−1 of power density and 12.25 Wh kg−1 of energy density. We also investigated the photocatalytic performance of the deposited film. Photodegradation efficiencies of methylene blue and methyl orange using PANI/WO3 and PANI/Cl were compared. The mechanism of dye degradation using WO3-containing films was investigated in thepresence of scavengers. Significantly higher efficiency of photodecomposition of dyes was achieved for composite films (84% and 86%) in comparison with PANI/Cl (32% and 39%) for methylene blue and methyl orange, respectively. |
| Starting Page | 5781 |
| e-ISSN | 19961944 |
| DOI | 10.3390/ma13245781 |
| Journal | Materials |
| Issue Number | 24 |
| Volume Number | 13 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2020-12-17 |
| Access Restriction | Open |
| Subject Keyword | Materials Electrochemistry Electrodeposition Pani/wo3 Composite Supercapacitor Photocatalytic Properties |
| Content Type | Text |
| Resource Type | Article |