Loading...
Please wait, while we are loading the content...
Similar Documents
A Low-Cost Microfluidic Method for Microplastics Identification: Towards Continuous Recognition
Content Provider | MDPI |
---|---|
Author | Mesquita, Pedro Gong, Liyuan Lin, Yang |
Copyright Year | 2022 |
Description | Plastic pollution has emerged as a growing concern worldwide. In particular, the most abundant plastic debris, microplastics, has necessitated the development of rapid and effective identification methods to track down the stages and evidence of the pollution. In this paper, we combine low-cost plastic staining technologies using Nile Red with the continuous feature offered by microfluidics to propose a low-cost 3D printed device for the identification of microplastics. It is observed that the microfluidic devices indicate comparable staining and identification performance compared to conventional Nile Red staining processes while offering the advantages of continuous recognition for long-term environmental monitoring. The results also show that concentration, temperature, and residency time possess strong effects on the identification performance. Finally, various microplastics have been applied to further demonstrate the effectiveness of the proposed devices. It is found that, among different types of microplastics, non-spherical microplastics show the maximal fluorescence level. Meanwhile, natural fibers indicate better staining quality when compared to synthetic ones. |
Starting Page | 499 |
e-ISSN | 2072666X |
DOI | 10.3390/mi13040499 |
Journal | Micromachines |
Issue Number | 4 |
Volume Number | 13 |
Language | English |
Publisher | MDPI |
Publisher Date | 2022-03-23 |
Access Restriction | Open |
Subject Keyword | Micromachines Environmental Engineering Microfluidics Microplastics Continuous Identification Low-cost 3d Printing |
Content Type | Text |
Resource Type | Article |