Loading...
Please wait, while we are loading the content...
Similar Documents
Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network
| Content Provider | MDPI |
|---|---|
| Author | Chen, Xing Liu, Guizhong |
| Copyright Year | 2022 |
| Description | Mobile edge computing (MEC) has become an indispensable part of the era of the intelligent manufacturing industry 4.0. In the smart city, computation-intensive tasks can be offloaded to the MEC server or the central cloud server for execution. However, the privacy disclosure issue may arise when the raw data is migrated to other MEC servers or the central cloud server. Since federated learning has the characteristics of protecting the privacy and improving training performance, it is introduced to solve the issue. In this article, we formulate the joint optimization problem of task offloading and resource allocation to minimize the energy consumption of all Internet of Things (IoT) devices subject to delay threshold and limited resources. A two-timescale federated deep reinforcement learning algorithm based on Deep Deterministic Policy Gradient (DDPG) framework (FL-DDPG) is proposed. Simulation results show that the proposed algorithm can greatly reduce the energy consumption of all IoT devices. |
| Starting Page | 4738 |
| e-ISSN | 14248220 |
| DOI | 10.3390/s22134738 |
| Journal | Sensors |
| Issue Number | 13 |
| Volume Number | 22 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2022-06-23 |
| Access Restriction | Open |
| Subject Keyword | Sensors Industrial Engineering Information and Library Science Smart City Mobile Edge Computing Task Offloading Resource Allocation Ddpg Federated Learning |
| Content Type | Text |
| Resource Type | Article |