Loading...
Please wait, while we are loading the content...
Similar Documents
Extension Coordinated Multi-Objective Adaptive Cruise Control Integrated with Direct Yaw Moment Control
| Content Provider | MDPI |
|---|---|
| Author | Wang, Hongbo Sun, Youding Gao, Zhengang Chen, Li |
| Copyright Year | 2021 |
| Description | An adaptive cruise control (ACC) system can reduce driver workload and improve safety by taking over the longitudinal control of vehicles. Nowadays, with the development of range sensors and V2X technology, the ACC system has been applied to curved conditions. Therefore, in the curving car-following process, it is necessary to simultaneously consider the car-following performance, longitudinal ride comfort, fuel economy and lateral stability of ACC vehicle. The direct yaw moment control (DYC) system can effectively improve the vehicle lateral stability by applying different longitudinal forces to different wheels. However, the various control objectives above will conflict with each other in some cases. To improve the overall performance of ACC vehicle and realize the coordination between these control objectives, the extension control is introduced to design the real-time weight matrix under a multi-objective model predictive control (MPC) framework. The driver-in-the-loop (DIL) tests on a driving simulator are conducted and the results show that the proposed method can effectively improve the overall performance of vehicle control system and realize the coordination of various control objectives. |
| Starting Page | 295 |
| e-ISSN | 20760825 |
| DOI | 10.3390/act10110295 |
| Journal | Actuators |
| Issue Number | 11 |
| Volume Number | 10 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2021-11-06 |
| Access Restriction | Open |
| Subject Keyword | Actuators Transportation Science and Technology Advanced Driver Assistant Systems Adaptive Cruise Control Direct Yaw Moment Control Extension Control Model Predictive Control |
| Content Type | Text |
| Resource Type | Article |