Loading...
Please wait, while we are loading the content...
Similar Documents
Supported Lipid Bilayer Platform for Characterizing the Membrane-Disruptive Behaviors of Triton X-100 and Potential Detergent Replacements
| Content Provider | MDPI |
|---|---|
| Author | Gooran, Negin Yoon, Bo Kyeong Jackman, Joshua A. |
| Copyright Year | 2022 |
| Description | Triton X-100 (TX-100) is a widely used detergent to prevent viral contamination of manufactured biologicals and biopharmaceuticals, and acts by disrupting membrane-enveloped virus particles. However, environmental concerns about ecotoxic byproducts are leading to TX-100 phase out and there is an outstanding need to identify functionally equivalent detergents that can potentially replace TX-100. To date, a few detergent candidates have been identified based on viral inactivation studies, while direct mechanistic comparison of TX-100 and potential replacements from a biophysical interaction perspective is warranted. Herein, we employed a supported lipid bilayer (SLB) platform to comparatively evaluate the membrane-disruptive properties of TX-100 and a potential replacement, Simulsol SL 11W (SL-11W), and identified key mechanistic differences in terms of how the two detergents interact with phospholipid membranes. Quartz crystal microbalance-dissipation (QCM-D) measurements revealed that TX-100 was more potent and induced rapid, irreversible, and complete membrane solubilization, whereas SL-11W caused more gradual, reversible membrane budding and did not induce extensive membrane solubilization. The results further demonstrated that TX-100 and SL-11W both exhibit concentration-dependent interaction behaviors and were only active at or above their respective critical micelle concentration (CMC) values. Collectively, our findings demonstrate that TX-100 and SL-11W have distinct membrane-disruptive effects in terms of potency, mechanism of action, and interaction kinetics, and the SLB platform approach can support the development of biophysical assays to efficiently test potential TX-100 replacements. |
| Starting Page | 869 |
| e-ISSN | 14220067 |
| DOI | 10.3390/ijms23020869 |
| Journal | International Journal of Molecular Sciences |
| Issue Number | 2 |
| Volume Number | 23 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2022-01-14 |
| Access Restriction | Open |
| Subject Keyword | International Journal of Molecular Sciences Environmental Engineering Virus Inactivation Enveloped Virus Triton X-100 Detergent Phospholipid Membrane Supported Lipid Bilayer Quartz Crystal Microbalance-dissipation |
| Content Type | Text |
| Resource Type | Article |