Loading...
Please wait, while we are loading the content...
Similar Documents
Life Cycle Environmental Sustainability and Energy Assessment of Timber Wall Construction: A Comprehensive Overview
| Content Provider | MDPI |
|---|---|
| Author | Sultana, Rabaka Rashedi, Ahmad Khanam, Taslima Jeong, Byongug Hosseinzadeh-Bandbafha, Homa Hussain, Majid |
| Copyright Year | 2022 |
| Description | This article presents a comprehensive overview of the life cycle environmental and energy assessment for all residential and commercial constructions made of timber walls, globally. The study was carried out based on a systematic literature analysis conducted on the Scopus database. A total of 66 research articles were relevant to timber wall design. Among these, the residential construction sector received more attention than the commercial sector, while the low-rise construction (1–2 stories) gained more attention than high-rise construction (>5 stories). Most of these studies were conducted in Canada, Europe, Malaysia, and the USA. In addition, the end-of-life phase received limited attention compared to upstream phases in most of the studies. We compared all environmental and energy-based life cycle impacts that used $“m^{2}$” as the functional unit; this group represented 21 research articles. Global warming potential was understandably the most studied life cycle environmental impact category followed by acidification, eutrophication, embodied energy, photochemical oxidation, and abiotic depletion. In terms of global warming impact, the external walls of low-rise buildings emit 18 to 702 kg $CO_{2}$ kg $eq./m^{2}$, while the internal walls of the same emit 11 kg $CO_{2}$ kg $eq./m^{2}$. In turn, the walls of high-rise buildings carry 114.3 to 227.3 kg $CO_{2}$ kg $eq./m^{2}$ in terms of global warming impact. The review highlights variations in timber wall designs and the environmental impact of these variations, together with different system boundaries and varying building lifetimes, as covered in various articles. Finally, a few recommendations have been offered at the end of the article for future researchers of this domain. |
| Starting Page | 4161 |
| e-ISSN | 20711050 |
| DOI | 10.3390/su14074161 |
| Journal | Sustainability |
| Issue Number | 7 |
| Volume Number | 14 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2022-03-31 |
| Access Restriction | Open |
| Subject Keyword | Sustainability Environmental Engineering Life Cycle Assessment Timber Wall Building Construction Greenhouse Gas Emission Abiotic Depletion Acidification Eutrophication Photochemical Oxidation Primary Energy Embodied Energy |
| Content Type | Text |
| Resource Type | Article |