Loading...
Please wait, while we are loading the content...
Similar Documents
3DLEB-Net: Label-Efficient Deep Learning-Based Semantic Segmentation of Building Point Clouds at LoD3 Level
| Content Provider | MDPI |
|---|---|
| Author | Cao, Yuwei Scaioni, Marco |
| Copyright Year | 2021 |
| Description | In current research, fully supervised Deep Learning (DL) techniques are employed to train a segmentation network to be applied to point clouds of buildings. However, training such networks requires large amounts of fine-labeled buildings’ point-cloud data, presenting a major challenge in practice because they are difficult to obtain. Consequently, the application of fully supervised DL for semantic segmentation of buildings’ point clouds at LoD3 level is severely limited. In order to reduce the number of required annotated labels, we proposed a novel label-efficient DL network that obtains per-point semantic labels of LoD3 buildings’ point clouds with limited supervision, named 3DLEB-Net. In general, it consists of two steps. The first step (Autoencoder, AE) is composed of a Dynamic Graph Convolutional Neural Network (DGCNN) encoder and a folding-based decoder. It is designed to extract discriminative global and local features from input point clouds by faithfully reconstructing them without any label. The second step is the semantic segmentation network. By supplying a small amount of task-specific supervision, a segmentation network is proposed for semantically segmenting the encoded features acquired from the pre-trained AE. Experimentally, we evaluated our approach based on the Architectural Cultural Heritage (ArCH) dataset. Compared to the fully supervised DL methods, we found that our model achieved state-of-the-art results on the unseen scenes, with only 10% of labeled training data from fully supervised methods as input. Moreover, we conducted a series of ablation studies to show the effectiveness of the design choices of our model. |
| Starting Page | 8996 |
| e-ISSN | 20763417 |
| DOI | 10.3390/app11198996 |
| Journal | Applied Sciences |
| Issue Number | 19 |
| Volume Number | 11 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2021-09-27 |
| Access Restriction | Open |
| Subject Keyword | Applied Sciences Imaging Science Remote Sensing 3d Point Cloud Autoencoder Label-efficient Lod3 Building Unsupervised Deep Learning |
| Content Type | Text |
| Resource Type | Article |