Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IET Digital Library |
---|---|
Author | Siniscalchi, Sabato Marco Li, Jinyu Lee, Chin Hui |
Abstract | Recently, speech scientists have been motivated by the great, success of building margin-based classifiers, and have thus proposed novel methods to estimate continuous-density hidden Markov model (HMM) for automatic speech recognition (ASR) according to the notion that the decision boundaries determined by the estimated HMMs attain the maximum classification margin as in learning support vector machines. Although a good performance has been observed, the margin used in the ASR community is often specified as a parameter that has no explicit relationship with the HMM parameters. The issues of how the margin is related to the HMM parameters and how it directly characterises the generalisation capability of HMM-based classifiers have not been addressed so far in the community. In this study, the authors attempt to formulate the margin used in the soft margin estimation framework as a function of the HMM parameters. The key idea is to relate the standard distance-based margin with the concept of divergence among competing HMM state Gaussian mixture model densities. Experimental results show that the proposed model-based margin function is a good indication about the quality of HMMs on a given ASR task without the conventional needs of running experiments extensively using a separate set of test samples. |
Starting Page | 704 |
Ending Page | 709 |
Page Count | 6 |
ISSN | 17519675 |
Volume Number | 7 |
e-ISSN | 17519683 |
Issue Number | Issue 8, Oct (2013) |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-spr/7/8 |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2013.0036 |
Journal | IET Signal Processing |
Access Restriction | Open |
Rights Holder | © The Institution of Engineering and Technology |
Subject Keyword | ASR Automatic Speech Recognition Continuous-density Hidden Markov Estimation Model Estimation Theory Gaussian Processes Generalisation Hidden Markov Model Hidden Markov Model Learning HMM Knowledge Engineering Technique Learning in AI Learning Support Vector Machine Margin-based Classifier Markov Processes Maximum Classification Margin Model-based Margin Estimation Parameter Estimation Pattern Classification Soft Margin Estimation Framework Speech Processing Technique Speech Recognition Speech Recognition And Synthesis Speech Scientist Standard Distance-based Margin State Gaussian Mixture Model Density Support Vector Machine |
Content Type | Text |
Resource Type | Article |
Subject | Signal Processing Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|