Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IET Digital Library |
---|---|
Author | Matza, Avi Bistritz, Yuval |
Abstract | Gaussian mixture models (GMMs) are widely used in speech and speaker recognition. This study explores the idea that a mixture of skew Gaussians might capture better feature vectors that tend to have skew empirical distributions. It begins with deriving an expectation maximisation (EM) algorithm to train a mixture of two-piece skew Gaussians that turns out to be not much more complicated than the usual EM algorithm used to train symmetric GMMs. Next, the algorithm is used to compare skew and symmetric GMMs in some simple speaker recognition experiments that use Mel frequency cepstral coefficients (MFCC) and line spectral frequencies (LSF) as the feature vectors. MFCC are one of the most popular feature vectors in speech and speaker recognition applications. LSF were chosen because they exhibit significantly more skewed distribution than MFCC and because they are widely used [together with the related immittance spectral frequencies (ISF)] in speech transmission standards. In the reported experiments, models with skew Gaussians performed better than models with symmetric Gaussians and skew GMMs with LSF compared favourably with both skew symmetric and symmetric GMMs that used MFCC. |
Starting Page | 860 |
Ending Page | 867 |
Page Count | 8 |
ISSN | 17519675 |
Volume Number | 8 |
e-ISSN | 17519683 |
Issue Number | Issue 8, Oct (2014) |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-spr/8/8 |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2013.0270 |
Journal | IET Signal Processing |
Publisher Date | 2014-10-28 |
Access Restriction | Open |
Rights Holder | © The Institution of Engineering and Technology |
Subject Keyword | EM Algorithm Expectation Maximisation Algorithm Expectation-maximisation Algorithm Feature Vector Gaussian Processes GMM Immittance Spectral Frequency Interpolation And Function Approximation ISF Line Spectral Frequency Linear Algebra LSF Mel Frequency Cepstral Coefflcient MFCC Mixture Model Numerical Analysis Skew Empirical Distribution Speaker Recognition Speech Processing Technique Speech Recognition Speech Recognition And Synthesis Speech Transmission Standard Statistics Two-piece Skew Gaussian Mixture Model Vector |
Content Type | Text |
Resource Type | Article |
Subject | Signal Processing Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|