Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IET Digital Library |
|---|---|
| Author | Song, Yan Yao, Shuang Yu, Donghua Shen, Yan Hu, Yuzhen |
| Abstract | The simplicity and interpretability of decision tree induction makes it one of the more widely used machine learning methods for data classification. However, for continuous valued (real and integer) attribute data, there is room for further improvement in classification accuracy, complexity, and tree scale. We propose a new K-ary partition discretization method with no more than K−1 cut points based on Gaussian membership functions and the expected class number. A new K-ary crisp decision tree induction is also proposed for continuous valued attributes with a Gini index, combining the proposed discretization method. Experimental results and non-parametric statistical tests on 19 real-world datasets showed that the proposed algorithm outperforms four conventional approaches in terms of both classification accuracy, tree scale, and particularly tree depth. Considering the number of nodes, the proposed methods decision tree tends to be more balanced than in the other four methods. The complexity of the proposed algorithm was relatively low. |
| Starting Page | 999 |
| Ending Page | 1007 |
| Page Count | 9 |
| ISSN | 10224653 |
| Volume Number | 26 |
| e-ISSN | 20755597 |
| Issue Number | Issue 5, Sep (2017) |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/cje/26/5 |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/cje.2017.07.015 |
| Journal | Chinese Journal of Electronics |
| Publisher Date | 2017-09-01 |
| Access Restriction | Open |
| Rights Holder | © Chinese Institute of Electronics |
| Subject Keyword | Combinatorial Mathematics Continuous Valued Attributes Data Classification Data Handling Data Handling Technique Decision Tree Gaussian Membership Function Gaussian Processes Gini Index K-1 Cut Point K-ary Crisp Decision Tree Induction K-ary Partition Discretization Method Knowledge Engineering Technique Learning in AI Machine Learning Method Pattern Classification Statistics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|