Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IET Digital Library |
|---|---|
| Author | Sun, Ai Zhao, Tianyi Chen, Jungfang Chang, Juifang |
| Abstract | Due to the mathematical modeling principle deficiency, the data-driven neural network and support vector machine methods have become the powerful basic methods for the exchange rate prediction. Based on the analysis of the characteristics of exchange rate time series data, the exchange rate prediction performance of Artificial neural network (ANN) and Least squares-Support vector machine (LS-SVM) is explored. The parameter optimization method of the two-times training is proposed. The fundamental principle of LS-SVM prediction is analysed in detail. By virtue of daily, monthly and quarterly data of three currency exchange rates, the prediction performance of LS-SVM is examined. The comparison is made with ANN prediction results based on the same data in relevant literature review. According to the experimental result, LS-SVM has better short-term prediction performance, and it is superior to ANN in most cases in terms of prediction precision. |
| Starting Page | 561 |
| Ending Page | 564 |
| Page Count | 4 |
| ISSN | 10224653 |
| Volume Number | 27 |
| e-ISSN | 20755597 |
| Issue Number | Issue 3, May (2018) |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/cje/27/3 |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/cje.2018.01.003 |
| Journal | Chinese Journal of Electronics |
| Publisher Date | 2018-05-01 |
| Access Restriction | Open |
| Rights Holder | © Chinese Institute of Electronics |
| Subject Keyword | ANN Prediction Result Artificial Neural Network Currency Exchange Rates Data-driven Neural Network Exchange Rate Prediction Performance Exchange Rate Time Series Data Exchange Rates Financial Computing Financial Data Processing Interpolation And Function Approximation Knowledge Engineering Technique Least Squares Approximation Least Squares-support Vector Machine Method LS-SVM Prediction Neural Computing Technique Neural Nets Numerical Analysis Parameter Optimization Method Statistics Support Vector Machine Time Series |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|