Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IET Digital Library |
|---|---|
| Author | Guo, Haiyun Wang, Jinqiao Lu, Hanqing |
| Abstract | Efficient indexing and retrieving objects of interest from large-scale surveillance videos are a significant and challenging topic. In this study, the authors present an effective multiple deep features learning approach for object retrieval in surveillance videos. Based on the discriminative convolutional neural network (CNN), they can learn multiple deep features to comprehensively describe the visual object. To be specific, they utilise the CNN model pre-trained on ImageNet ILSVRC12 and fine-tuned on our dataset to abstract structure information. In addition, they train another CNN model supervised by 11 colour names to deliver the colour information. To improve the retrieval performance, the deep features are encoded into short binary codes by locality-sensitive hash and fused to fast retrieve the object of interest. Retrieval experiments are performed on a dataset of 100k objects extracted from multi-camera surveillance videos. Comparison results with other common visual features show the effectiveness of the proposed approach. |
| Starting Page | 268 |
| Ending Page | 272 |
| Page Count | 5 |
| ISSN | 17519632 |
| Volume Number | 10 |
| e-ISSN | 17519640 |
| Issue Number | Issue 4, Jun (2016) |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-cvi/10/4 |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2015.0291 |
| Journal | IET Computer Vision |
| Publisher Date | 2016-02-26 |
| Access Restriction | Open |
| Rights Holder | © The Institution of Engineering and Technology |
| Subject Keyword | Binary Codes CNN Model Colour Information Computer Vision And Image Processing Technique Discriminative Convolutional Neural Network Feature Extraction Feedforward Neural Network File Organisation Image And Video Coding Image Coding Image Colour Analysis Image Fusion Image Recognition ImageNet ILSVRC12 Indexing Information Analysis And Indexing Information Retrieval Technique Large-scale Surveillance Videos Locality-sensitive Hash Multiple Deep Feature Learning Neural Computing Technique Object Indexing Object Retrieval Retrieval Performance Improvement Sensor Fusion Short Binary Code Video Retrieval Video Signal Processing Video Surveillance |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|