Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IET Digital Library |
---|---|
Author | Zhao, Jianwei Sun, Tiantian Cao, Feilong |
Abstract | This study proposes a novel super-resolution regularisation model based on adaptive sparse representation and self-learning frameworks. The fidelity term in the model ensures that the reconstructed image is consistent with the observation image. The adaptive sparsity regularisation term constrains the reconstructed image with an adaptive sparse representation, which successfully harmonises the sparse representation and the collaborative representation adaptively via producing suitable coefficients. To construct a more effective dictionary, the high-frequency features from the underlying image patches are extracted, and the dictionary learning and sparse representation are integrated. To this end, the alternating minimisation algorithm is used to divide this model into three subproblems, and the alternating direction method of multipliers and iterative back-projection method are used to solve the subproblems. To illustrate the effectiveness of the proposed method, additional experiments are conducted on some generic images. Compared with some state-of-the-art algorithms, the experimental results demonstrate that the proposed method achieves better results in terms of both visual quality and noise immunity. |
Starting Page | 753 |
Ending Page | 761 |
Page Count | 9 |
ISSN | 17519632 |
Volume Number | 12 |
e-ISSN | 17519640 |
Issue Number | Issue 5, Aug (2018) |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-cvi/12/5 |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2017.0153 |
Journal | IET Computer Vision |
Publisher Date | 2018-03-19 |
Access Restriction | Open |
Rights Holder | © The Institution of Engineering and Technology |
Subject Keyword | Adaptive Sparse Representation Adaptive Sparsity Regularisation Term Collaborative Representation Computer Vision And Image Processing Technique Dictionaries Generic Image Image Reconstruction Image Representation Image Resolution Image Restoration Interpolation And Function Approximation Iterative Method Learning in AI Minimisation Novel Super-resolution Regularisation Model Numerical Analysis Observation Image Optical, Image And Video Signal Processing Reconstructed Image Underlying Image Patches |
Content Type | Text |
Resource Type | Article |
Subject | Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|