Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IET Digital Library |
|---|---|
| Author | Xie, Deyan Nie, Feiping Gao, Quanxue Xiao, Song |
| Abstract | Low-rank representation (LRR) and its variants have been proved to be powerful tools for handling subspace clustering problems. Most of these methods involve a sub-problem of computing the singular value decomposition of an n × n matrix, which leads to a computation complexity of O ( n 3 ) . Obviously, when n is large, it will be time consuming. To address this problem, the authors introduce a fast solution, which reformulates the large-scale problem to an equal form with smaller size. Thus, the proposed method remarkably reduces the computation complexity by solving a small-scale problem. Theoretical analysis proves the efficiency of the proposed model. Furthermore, we extend LRR to a general model by using Schatten p-norm instead of nuclear norm and present a fast algorithm to solve large-scale problem. Experiments on MNIST and Caltech101 databse illustrate the equivalence of the proposed algorithm and the original LRR solver. Experimental results show that the proposed algorithm is remarkably faster than traditional LRR algorithm, especially in the case of large sample number. |
| Starting Page | 1475 |
| Ending Page | 1480 |
| Page Count | 6 |
| ISSN | 17519659 |
| Volume Number | 14 |
| e-ISSN | 17519667 |
| Issue Number | Issue 8, Jun (2020) |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-ipr/14/8 |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.6596 |
| Journal | IET Image Processing |
| Publisher Date | 2020-01-28 |
| Access Restriction | Open |
| Rights Holder | © The Institution of Engineering and Technology |
| Subject Keyword | Algebra Caltech101 Databse Computation Complexity Computational Complexity Data Handling Technique Large-scale Problem Large-scale SubSpace Clustering Low-rank Representation Matrix Algebra MNIST Original LRR Solver Pattern Clustering Singular Value Decomposition Small-scale Problem SubSpace Clustering Problem Traditional LRR Algorithm |
| Content Type | Text |
| Resource Type | Article |
| Subject | Signal Processing Electrical and Electronic Engineering Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|