Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IET Digital Library |
---|---|
Author | Mounsef, Jinane Karam, Lina |
Abstract | In the last two decades, numerous methods have been developed to offer a formulation to the face recognition problem under scene-dependent conditions. However, these methods have not considered image quality degradations resulting from capture, processing, and transmission such as blur and occlusion due to packet loss, under the same scene variations. Although deep neural networks are achieving state-of-the-art results on face recognition, the existing networks are susceptible to quality distortions. In this work, the authors propose an augmented sparse representation classifier (SRC) framework to improve the performance of the conventional SRC in the presence of Gaussian blur, camera shake blur, and block occlusions, while preserving its robustness to scene-dependent variations. In their evaluation of the SRC framework, they present a feature sparsity concentration and classification index that is capable of assessing the quality of features in terms of recognition accuracy as well as class-based sparsity concentration. For this purpose, they consider three main types of features including image raw pixels, histogram of oriented gradients and deep learning visual geometry group (VGG) Face. The obtained performance results show that the proposed method outperforms state-of-the-art sparse-based and blur-invariant methods. |
Starting Page | 431 |
Ending Page | 442 |
Page Count | 12 |
ISSN | 20474938 |
Volume Number | 8 |
e-ISSN | 20474946 |
Issue Number | Issue 6, Nov (2019) |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-bmt/8/6 |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2018.5242 |
Journal | IET Biometrics |
Publisher Date | 2019-08-05 |
Access Restriction | Open |
Rights Holder | © The Institution of Engineering and Technology |
Subject Keyword | Augmented Sparse Representation Classifier Framework Augmented SRC Block Occlusions Camera Shake Blur Class-based Sparsity Concentration Classification Index Computer Vision And Image Processing Technique Deep Learning VGG-Face Deep Neural Network Face Recognition Face Recognition Problem Feature Extraction Feature Sparsity Concentration Gaussian Blur Gaussian Processes Histogram of Oriented Gradients Image Classification Image Quality Degradations Image Raw Pixel Image Recognition Image Representation Image Restoration Learning in AI Neural Computing Technique Neural Nets Packet Loss Performance Improvement Quality Distortion Recognition Accuracy Scene Variations Scene-dependent Condition Scene-dependent Variations Statistics |
Content Type | Text |
Resource Type | Article |
Subject | Signal Processing Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|