Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IET Digital Library |
|---|---|
| Author | Zhou, Jiancan Jia, Xi Shen, Linlin Wen, Zhenkun Ming, Zhong |
| Abstract | In recent years, deep convolutional neural networks (CNN) have been widely used in computer vision and significantly improved the performance of image recognition tasks. Most works use softmax loss to supervise the training of CNN and then adopt the output of last layer as features. However, the discriminative capability of the softmax loss is limited. Here, the authors analyse and improve the softmax loss by manipulating the cosine value and input feature length. As the approach does not change the principle of the softmax loss, the network can easily be optimised by typical stochastic gradient descent. The MNIST handwritten digits dataset is employed to visualise the features learned by the improved softmax loss. The CASIA-WebFace and FER2013 training set are adopted to train deep CNN for face and expression recognition, respectively. Results on both the LFW dataset and FER2013 test set show that the proposed softmax loss can learn more discriminative features and achieve better performance. |
| Starting Page | 97 |
| Ending Page | 102 |
| Page Count | 6 |
| Volume Number | 1 |
| e-ISSN | 25177567 |
| Issue Number | Issue 4, Dec (2019) |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/ccs/1/4 |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/ccs.2019.0010 |
| Journal | Cognitive Computation and Systems |
| Publisher | Shenzhen University The Institution of Engineering and Technology |
| Publisher Date | 2019-09-30 |
| Access Restriction | Open |
| Rights License | Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) |
| Subject Keyword | CASIA-WebFace Computer Vision Computer Vision And Image Processing Technique Convolutional Neural Nets Deep CNN Deep Convolutional Neural Network Deep Learning-based Face Recognition Discriminative Features Expression Recognition Face Recognition Feature Extraction FER2013 Training Set Gradient Method Image Recognition Improved Softmax Loss Interpolation And Function Approximation Knowledge Engineering Technique Learning in AI LFW Dataset MNIST Handwritten Digits Dataset Neural Computing Technique Numerical Analysis |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|