Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IET Digital Library |
|---|---|
| Author | Kim, H. G. Park, J. S. Kim, D. G. Lee, H. K. |
| Abstract | With the rapid spread of image editing software, anyone can easily create, distribute, and forge images. Although techniques to detect image forgery have been widely studied, current techniques have significant limitations, such as specific file formats, manipulations, or compression qualities. Although deep learning techniques have been introduced to detect various manipulations, such as blurring, median filtering, and Gaussian noise, these techniques are only suitable to detect forgeries of uncompressed images, and are difficult to apply in practice because most images are compressed for distribution. Therefore, a two-stream neural network approach for image forensics that is robust to compression is proposed. The two-stream neural network is based on constrained convolutional neural network and Markov characteristics to consider compression. Experimental results show that the proposed method overcomes current technique limitations. |
| Starting Page | 354 |
| Ending Page | 355 |
| Page Count | 2 |
| ISSN | 00135194 |
| Volume Number | 54 |
| e-ISSN | 1350911X |
| Issue Number | Issue 6, Mar (2018) |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/el/54/6 |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/el.2017.4444 |
| Journal | Electronics Letters |
| Publisher Date | 2018-02-13 |
| Access Restriction | Open |
| Rights Holder | © The Institution of Engineering and Technology |
| Subject Keyword | Compression Qualities Computer Vision And Image Processing Technique Constrained Convolutional Neural Network Current Technique Current Technique Limitations Data Compression Deep Learning Technique Forgeries Gaussian Noise Image Coding Image Editing Software Image Forensics Image Forgery Learning in AI Manipulations Median Filtering Neural Computing Technique Neural Nets Optical, Image And Video Signal Processing Rapid Spread Significant Limitations Specific File Formats Stream Neural Network Two-stream Neural Network Approach Uncompressed Image |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|