Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IET Digital Library |
---|---|
Author | Karakus, Erkan Kose, Hatice |
Abstract | Sensor-based human activity classification requires time and frequency domain feature extraction techniques. The set of choice in time and frequency domain features may have a significant impact on the overall classification accuracy. Another problem is to train deep learning models with sufficient dataset. The use of generative models eliminates the requirement of choosing certain features of the signal. As a generative model, restricted Boltzmann machine (RBM) is an energy-based probabilistic graphical model which factorises the probability distribution of a random variable over a binary probability distribution. Conditional restricted Boltzmann machines (CRBMs) is an extension to RBM, which can capture temporal information in time-series signals and can be deployed as a generative model in classification. In this study, the authors show how CRBMs can be trained to learn signal features. They present four generative model training results, RBM, CRBM, generative adversarial network, Wasserstein generative adversarial network – gradient penalty and compare the models' performances with a performance criterion. They show that the CRBM model can generate signals closest to true signals with a significantly higher success rate as compared to other presented generative models. They present a statistical analysis of the findings and show that the findings significantly hold. |
Starting Page | 725 |
Ending Page | 736 |
Page Count | 12 |
ISSN | 17519675 |
Volume Number | 14 |
e-ISSN | 17519683 |
Issue Number | Issue 10, Dec (2020) |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-spr/14/10 |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2020.0154 |
Journal | IET Signal Processing |
Publisher Date | 2021-01-05 |
Access Restriction | Open |
Rights Holder | © The Institution of Engineering and Technology |
Subject Keyword | Algebra Binary Probability Distribution Biology And Medical Computing Biomedical Engineering Biomedical Measurement And Imaging Body-worn Sensor Signal Boltzmann Machines Classification Accuracy Classification Model Combinatorial Mathematics Conditional Restricted Boltzmann Machine CRBM Model Deep Learning (artificial Intelligence) Deep Learning-based Classification Technique Digital Signal Processing Energy-based Probabilistic Graphical Model Feature Extraction Frequency Domain Analysis Frequency Domain Feature Frequency Domain Feature Extraction Generative Model Training Gradient Penalty Graph Theory Mathematical Analysis Medical Signal Processing Performance Criterion Probability Theory Random Processes Random Variable RBM Sensor-based Human Activity Recognition Problem Set Theory Signal Classification Signal Feature Signal Processing And Detection Signal Processing Technique Statistical Analysis Statistical Distribution Statistics Stochastic Linearised SCUC Time Domain Analysis Time Domain Feature Time Series Time-series Signal Wasserstein Generative Adversarial Network |
Content Type | Text |
Resource Type | Article |
Subject | Signal Processing Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|