Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Glaser, G. Nitsche, G. Hennig, E. |
| Copyright Year | 2015 |
| Description | Author affiliation: Reutlingen Univ., Reutlingen, Germany (Hennig, E.) || IMMS Inst. fur Mikroelektronikund Mechatronik-Syst. gemeinnutzige GmbH Ilmenau, Ilmenau, Germany (Glaser, G.) || Inst. fur Inf., OFFIS, Oldenburg, Germany (Nitsche, G.) |
| Abstract | Virtual prototyping of integrated mixed-signal smart-sensor systems requires high-performance co-simulation of analog frontend circuitry with complex digital controller hardware and embedded real-time software. We use SystemC/TLM 2.0 in combination with a cycle-count accurate temporal decoupling approach to simulate digital components and firmware code execution at high speed while preserving clock cycle accuracy and, thus, real-time behavior at time quantum boundaries. Optimal time quanta ensuring real-time capability can be calculated and set automatically during simulation if the simulation engine has access to exact timing information about upcoming communication events. These methods fail in case of non-deterministic, asynchronous events resulting in a possibly invalid simulation result. In this paper, we propose an extension of this method to the case of asynchronous events generated by blackbox sources from which a-priori event timing information is not available, such as coupled analog simulators or hardware in the loop. Additional event processing latency and/or rollback effort caused by temporal decoupling is minimized by calculating optimal time quanta dynamically in a SystemC model using a linear prediction scheme. For an example smart-sensor system model, we show that quasi-periodic events that trigger activities in temporally decoupled processes are handled accurately after the predictor has settled. |
| Starting Page | 1 |
| Ending Page | 6 |
| File Size | 568103 |
| Page Count | 6 |
| File Format | |
| e-ISBN | 9781467377355 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-09-14 |
| Publisher Place | Spain |
| Access Restriction | Subscribed |
| Rights Holder | ECSI |
| Subject Keyword | Microcontrollers Simulation Stochastic processes Signal processing algorithms Predictive models Synchronization |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|