Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Balahur, A. Montoyo, A. |
| Copyright Year | 2008 |
| Description | Author affiliation: DLSI, Univ. Alicante, Alicante (Balahur, A.; Montoyo, A.) |
| Abstract | Mining the web for customer opinion on different products is both a useful, as well as challenging task. Previous approaches to customer review classification included document level, sentence and clause level sentiment analysis and feature based opinion summarization. In this paper, we present a feature driven opinion summarization method, where the term ldquodrivenrdquo is employed to describe the concept-to-detail (product class to product-specific characteristics) approach we took. For each product class we first automatically extract general features (characteristics describing any product, such as price, size, design), for each product we then extract specific features (as picture resolution in the case of a digital camera) and feature attributes (adjectives grading the characteristics, as for example high or low for price, small or big for size and modern or faddy for design). Further on, we assign a polarity (positive or negative) to each of the feature attributes using a previously annotated corpus and Support Vector Machines Sequential Minimal Optimization machine learning with the Normalized Google Distance. We show how the method presented is employed to build a feature-driven opinion summarization system that is presently working in English and Spanish. In order to detect the product category, we use a modified system for person names classification. The raw review text is split into sentences and depending on the product class detected, only the phrases containing the specific product features are selected for further processing. The phrases extracted undergo a process of anaphora resolution, Named Entity Recognition and syntactic parsing. Applying syntactic dependency and part of speech patterns, we extract pairs containing the feature and the polarity of the feature attribute the customer associates to the feature in the review. Eventually, we statistically summarize the polarity of the opinions different customers expressed about the product on the web as percentages of positive and negative opinions about each of the product features. We show the results and improvements over baseline, together with a discussion on the strong and weak points of the method and the directions for future work. |
| Starting Page | 1 |
| Ending Page | 7 |
| File Size | 199078 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781424445158 |
| DOI | 10.1109/NLPKE.2008.4906796 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-10-19 |
| Publisher Place | China |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | summarization SVM machine learning Blogs Product design Digital cameras Support vector machines Normalized Google Distance Machine learning Ear Feature extraction Speech Internet Opinion mining Web sites |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|