Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Hallsteinsen, Svein Hinchey, Mike Park, Sooyong Schmid, Klaus |
| Copyright Year | 2011 |
| Abstract | In emerging domains such as ubiquitous computing, service robotics, unmanned space and water exploration, and medical and life-support devices, software is becoming increasingly complex with extensive variation in both requirements and resource constraints. Developers face growing pressure to deliver high-quality software with additional functionality, on tight deadlines, and more economically. In addition, modern computing and network environments demand a higher degree of adaptability from their software systems. Computing environments, user requirements, and interface mechanisms between software and hardware devices such as sensors can change dynamically during runtime. Because it's impossible to foresee all the functionality or variability an SPL requires, there is a need for dynamic SPLs that produce software capable of adapting to fluctuations in user needs and evolving resource constraints. DSPLs bind variation points at runtime, initially when software is launched, to adapt to the current environment, as well as during operation to adapt to changes in the environment. Although traditional SPL engineering recognizes that variation points are bound at different stages of development, and possibly also at runtime, it typically binds variation points before delivery of the software. In contrast, DSPL engineers typically aren't concerned with pre-runtime variation points. However, they recognize that in practice mixed approaches might be viable, where some variation points related to the environment's static properties are bound before runtime and others related to the dynamic properties are bound at runtime. In DSPLs, monitoring the current situation and controlling the adaptation are thus central tasks. The user, the application, or generic middleware can perform these tasks manually or automatically. Although dynamic software product lines build on the central ideas of SPLs, there are also differences. For example, the focus on understanding the market and letting the SPL drive variability analysis is less relevant to DSPLs, whose primary goal is to adapt to variations in individual needs and situations rather than market forces. In summary, a DSPL has many, if not all, of the following properties: dynamic variability configuration and binding at runtime, changes binding several times during its lifetime, variation points change during runtime: variation point addition (by extending one variation point), deals with unexpected changes (in some limited way), deals with changes by users, such as functional or quality requirements, context awareness (optional) and situation awareness, autonomic or self-adaptive properties (optional), automatic decision making (optional), and individual environment/context situation instead of a "market." Given these characteristics, DSPLs benefits from research in several related areas. For example, situation monitoring and adaptive decision making are also characteristics of autonomic computing, and the DSPL approach can be seen as one among several to building self-adapting/managing/healing systems. In addition, dynamically reconfigurable architectures provide mechanisms to rebind variation points at runtime, while multiagent systems, which focus on the use of agents and communities of agents, are particularly useful for evolving systems such as DSPLs [1]. |
| Starting Page | 335 |
| Ending Page | 335 |
| File Size | 167098 |
| Page Count | 1 |
| File Format | |
| ISBN | 9781457710292 |
| DOI | 10.1109/SPLC.2011.50 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-08-22 |
| Publisher Place | Germany |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Runtime Decision making Educational institutions Dynamic scheduling Software Space exploration Monitoring dynamic software product lines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|