Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Keke Chen Fengguang Tian |
| Copyright Year | 2009 |
| Description | Author affiliation: Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, USA (Keke Chen; Fengguang Tian) |
| Abstract | Many machine learning problems involve changes in both feature distribution and label distribution, such as domain adaptation and learning drifting concepts from data streams. Correctly detecting, identifying, and understanding the changes of data distributions can help us properly select data samples or algorithms for learning models. However, since the training datasets are often in high dimensionality and large size, it has been difficult to effectively analyze them. Furthermore, the joint distribution between features and labels makes the problem more difficult to handle. In this paper, we propose a visual analysis method (VisGBT) that combines the gradient-boosting-trees (GBT) modeling method, regression analysis, and multidimensional visualization to capture the mismatches between datasets and models. The GBT model consists of a series of trees with a predefined number of terminal (leaf) nodes per tree. These terminal nodes partition the high dimensional space with a few most informative features to minimize the label prediction error. VisGBT maps various kinds of detailed model information to the terminal node matrix (TNM) and visualizes it with an appropriate design. With this visual analysis method, we can easily find out the detailed differences between datasets with the help of a learned model. We will illustrate the use of various visual patterns and in particular show how this method can help us analyze domain similarity for domain adaptation. |
| Starting Page | 1 |
| Ending Page | 10 |
| File Size | 10256836 |
| Page Count | 10 |
| File Format | |
| ISBN | 9789639799769 |
| DOI | 10.4108/ICST.COLLABORATECOM2009.8281 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-11-11 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | ICST |
| Subject Keyword | Computer science Data analysis Multidimensional systems Costs Machine learning algorithms Data visualization Training data Machine learning Data engineering Regression analysis |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|