Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Schleif, Frank-Michael Villmann, Thomas Zhu, Xibin |
| Copyright Year | 2014 |
| Abstract | In supervised learning the parameters of a parametric Euclidean distance or mahalanobis distance can be effectively learned by so called Matrix Relevance Learning. This adaptation is not only useful to improve the discrimination capabilities of the model, but also to identify relevant features or relevant correlated features in the input data. Classical Matrix Relevance Learning scales quadratic with the number of input dimensions M and becomes prohibitive if M exceeds some thousand input features. We address Matrix Relevance Learning for data with a very large number of input dimensions. Such high dimensional data occur frequently in the life sciences domain e.g. For microarray or spectral data. We derive two respective approximation schemes and show exemplarily the implementation in Generalized Matrix Relevance Learning (GMLVQ) for classification problems. The first approximation scheme is based on Limited Rank Matrix Approximation (LiRaM) LiRaM is a random subspace projection technique which was formerly mainly considered for visualization purposes. The second novel approximation scheme is based on the Nystroem approximation and is exact if the number of Eigen values equals the rank of the Relevance Matrix. Using multiple benchmark problems, we demonstrate that the training process yields fast low rank approximations of the relevance matrices without harming the generalization ability. The approaches can be used to identify discriminative features for high dimensional data sets. |
| Starting Page | 661 |
| Ending Page | 667 |
| File Size | 477207 |
| Page Count | 7 |
| File Format | |
| e-ISBN | 9781479942749 |
| DOI | 10.1109/ICDMW.2014.15 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2014-12-14 |
| Publisher Place | China |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Training high dimensional Prototypes low rank approximation discriminative embedding Eigenvalues and eigenfunctions feature reduction Complexity theory Approximation methods Matrix decomposition Kernel relevance learning |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|