Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Batuwita, R. Palade, V. |
| Copyright Year | 2009 |
| Abstract | In class imbalance learning, the performance measure used for the model selection would play a vital role. It has been well-studied in the past research that the most widely used performance measure, the overall accuracy of the model, can lead to sub-optimal classification models when learning from imbalanced datasets. In order to overcome this problem, other performance measures, such as the Geometric-mean (Gm) and F-measure (Fm), have been used for imbalanced dataset learning. Training a classifier system with an imbalanced dataset (where the positive class is the minority class) would usually produce sub-optimal models having a higher Specificity (SP) and a lower Sensitivity (SE). By applying class imbalance learning methods, we would often be able to increase the SE by sacrificing some amount of SP. In some type of real world imbalanced classification problems, such as the gene finding Bioinformatics problems, it is important to improve the SE as much as possible by keeping the reduction of SP to the minimum. In this paper, we show that with respect to this type of classification problems the existing performance measures used in class imbalance learning (Gm and Fm) can still result in sub-optimal classification models. In order to circumvent these problems, we introduced a new performance measure, called Adjusted Geometric-mean (AGm). We show, both analytically and empirically on two real-world Bioinformatics datasets, that AGm can perform better than Gm and Fm metrics. |
| Starting Page | 545 |
| Ending Page | 550 |
| File Size | 414957 |
| Page Count | 6 |
| File Format | |
| ISBN | 9780769539263 |
| DOI | 10.1109/ICMLA.2009.126 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-12-13 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Costs Laboratories Predictive models Data processing Electronic mail Performance Measures SVMs Learning systems Proteins Machine learning Model Selection Performance analysis Bioinformatics Class Imbalance Learning |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|