Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Chunhua Shen Hongdong Li Brooks, M.J. |
| Copyright Year | 2006 |
| Description | Author affiliation: National ICT Australia, Australia; Australian National University, Australia (Chunhua Shen; Hongdong Li) || University of Adelaide, Australia (Brooks, M.J.) |
| Abstract | The success of any Bayesian particle filtering based tracker relies heavily on the ability of the likelihood function to discriminate between the state that fits the image well and those that do not. This paper describes a general framework for learning probabilistic models of objects for exploiting these models for tracking objects in image sequences. We use a discriminative classifier to learn models of how they appear in images. In particular, we use a support vector machine (SVM) for training, which is able to extract useful non-linear information, and thus represent more complex characteristics of the tracked object and background. This is a particular advantage when tracking deformable objects and where appearance changes due to the unstable illumination and pose occur. A by-product of the SVM training procedure is the classification function, with which the tracking problem is cast into a binary classification problem. An object detector directly using the classification function is then available. To make the tracker robust, an object detector that directly uses the classification function is combined into the tracker for object verification. This provides the capability for automatic initialisation and recovery from momentary tracking failures. We demonstrate improved robustness in image sequences. |
| Starting Page | 33 |
| Ending Page | 33 |
| File Size | 306206 |
| Page Count | 1 |
| File Format | |
| ISBN | 0769526888 |
| DOI | 10.1109/AVSS.2006.33 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2006-11-22 |
| Publisher Place | Australia |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Support vector machines Filtering Bayesian methods Support vector machine classification Object detection Detectors Robustness Image sequences Data mining Particle tracking |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|