Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Wen-Tsung Tseng Ho-Yi Tsai Chiu, S. Hsiao, C.S. |
| Copyright Year | 2007 |
| Description | Author affiliation: Siliconware Precision Ind. Co. Ltd., Taichung (Wen-Tsung Tseng; Ho-Yi Tsai; Chiu, S.; Hsiao, C.S.) |
| Abstract | Low-k dielectrics materials in the active layers on the chip surface has become a hot topic as most 90 nm devices and all 65 nm devices utilize low-k dielectrics materials. Low-k dielectrics materials provide a significant increase in performance of the devices but low-k materials have very low mechanical strength compared to the traditional dielectric films due to their porous nature, which results in low strength and poor adhesion qualities of the low-k dielectric materials. These lead to a unique set of mechanical issues when low-k die are packaged, the reliability of low-k flip chip packaging has become a critical issue. The coefficient of thermal expansion (CTE) mismatch between the silicon die and the substrate produces a bending or curvature of the assembly upon changes of temperature. This type of thermal/mechanical stress can lead to solder bump fatigue, delamination of the low-k dielectrics materials and the failure of the electronic package. Due to the mechanical sensitivity of the low-k material, stresses induced by the package has been demonstrated to exasperate the problem. Additionally, the tight bump pitch and low standoff height of future packages reduce the flow performance of conventional liquid capillary underfill (CUF) that results in low productivity (low unit per hour (UPH)) and low throughput. Thence, there is a need to use better technology to improve these problems, new molding underfill flip chip ball grid arrays (terminator FCBGA ) structure is developed. It uses hydrodynamic pressure of a mold press to transfer molten molding underfill material into the flip chip undergap, Therefore it does not have the same limitation as the conventional liquid capillary underfill (CUF) and the biggest advantage is its better coplanarity, high throughput , low stress , stronger bump protection, better solder joint capability and same thermal performance, especially for large package size and large die size. New molding underfill structure terminator FCBGA can provide strong bump protection and reach high reliability performance due to epoxy molding compound (EMC) low coefficient of thermal expansion (CTE) and high modulus. This kind of structure can also be applied all kind of bump composition such as tin-lead, high lead, and lead free. Furthermore, this paper also describes the process and reliability validation result. |
| Starting Page | 335 |
| Ending Page | 337 |
| File Size | 287073 |
| Page Count | 3 |
| File Format | |
| ISBN | 9781424416363 |
| DOI | 10.1109/IMPACT.2007.4433630 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-10-01 |
| Publisher Place | Taiwan |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Environmentally friendly manufacturing techniques Dielectric materials Electronic packaging thermal management Throughput Flip chip Thermal expansion molding underfill Low-k Lead Protection Thermal stresses flip chip coplanarity Electronics packaging |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|