Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Buelens, B. Williams, R. Sale, A. Pauly, T. |
| Copyright Year | 2005 |
| Description | Author affiliation: Scho. of Comput., Tasmania Univ., Hobart, Tas., Australia (Buelens, B.; Williams, R.; Sale, A.) |
| Abstract | A model of the multibeam echosounding process was developed. This model has now been used as the basis for the application of a model inversion technique, with the aim of analyzing midwater multibeam echosounder data, for fisheries applications. Research on midwater multibeam echosounding for fisheries is in its infancy. Some results have been published, announcing promising progress at the level of multibeam transducer design, beamforming algorithms and calibration procedures, but no standard post-processing technique has emerged yet. In this paper, the post-processing of midwater multibeam backscatter data is placed in a scientific data mining framework. Data mining aims at automatically extracting useful information and knowledge from large volumes of data which don't reveal this knowledge in a trivial manner. Multibeam acoustic data has an additional dimension compared to single beam data, and multibeam echosounding results in large data logging rates, typically several gigabytes per hour, making it suitable for applying data mining algorithms in order to analyze the data in post-processing. A data mining technique to handle multibeam data sets is presented. The technique is based on inverse modeling. A model of the multibeam echosounding process was developed, including a physical underwater acoustics model, as well as a model of a generic multibeam transducer and its digital signal processor. This model has now been approximated by an invertible function, leading to an inverse model. Applying the inverse model to midwater multibeam backscatter data results in a set of soundings. A multibeam midwater sounding is the equivalent of a standard multibeam sounding as obtained from hydrographic multibeam instruments. In the midwater multibeam echosounding context, a sounding can represent anything in the water column, not just the seabed. These soundings can be visualized directly, allowing for exploratory data analysis in a 3d or 4d interactive environment. Furthermore, various features can be tagged to each sounding, such as the backscatter energy value and some statistical parameters of the multibeam ping from which the sounding was obtained. The term data node is used to describe the sounding and its associated feature vector. The set of data nodes serves as the basis for further advanced spatiotemporal data mining techniques. Soundings can be clustered into coherent groups, each cluster representing an object in the water column, such as a fish school. Cluster features are obtained from the feature tags of their contained data nodes, giving rise to feature vectors for each cluster. Clusters can be classified into classes of different types, using each cluster's feature vector. When a cluster is thought of as a fish school, it can be classified according to fish species or age group, for example. The concept of a set of data nodes is a versatile concept that can be extended further, enabling the application of more advanced clustering and classification algorithms. |
| Starting Page | 431 |
| Ending Page | 435 |
| File Size | 997101 |
| Page Count | 5 |
| File Format | |
| ISBN | 0780391039 |
| DOI | 10.1109/OCEANSE.2005.1511753 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2005-06-20 |
| Publisher Place | France |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Backscatter Data analysis Data mining Inverse problems Marine animals Aquaculture Algorithm design and analysis Signal processing algorithms Educational institutions Transducers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|