Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Mirowski, P.W. Yann LeCun Madhavan, D. Kuzniecky, R. |
| Copyright Year | 2008 |
| Description | Author affiliation: Sch. of Med., NYU Epilepsy Center, New York Univ., New York, NY (Kuzniecky, R.) || Dept. of Neurological Sci., Univ. of Nebraska Med. Center, Omaha, NE (Madhavan, D.) || Courant Inst. of Math. Sci., New York Univ., New York, NY (Mirowski, P.W.; Yann LeCun) |
| Abstract | Recent research suggests that electrophysiological changes develop minutes to hours before the actual clinical onset in focal epileptic seizures. Seizure prediction is a major field of neurological research, enabled by statistical analysis methods applied to features derived from intracranial Electroencephalographic (EEG) recordings of brain activity. However, no reliable seizure prediction method is ready for clinical applications. In this study, we use modern machine learning techniques to predict seizures from a number of features proposed in the literature. We concentrate on aggregated features that encode the relationship between pairs of EEG channels, such as cross-correlation, nonlinear interdependence, difference of Lyapunov exponents and wavelet analysis-based synchrony such as phase locking. We compare L1-regularized logistic regression, convolutional networks, and support vector machines. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. For each patient, at least one method predicts 100% of the seizures on average 60 minutes before the onset, with no false alarm. Possible future applications include implantable devices capable of warning the patient of an upcoming seizure as well as implanted drug-delivery devices. |
| Starting Page | 244 |
| Ending Page | 249 |
| File Size | 803962 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781424423750 |
| ISSN | 15512541 |
| DOI | 10.1109/MLSP.2008.4685487 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-10-16 |
| Publisher Place | Mexico |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Support vector machines Epilepsy Electroencephalography Floors Convolution Brain Electrodes Statistical analysis Prediction methods Machine learning |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|