Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Zambrini, R. Hoyuelos, M. Gatti, A. Colet, P. Lugiato, L. San Miguel, M. |
| Copyright Year | 2000 |
| Description | Author affiliation: Univ. de les Illes Balears, Palma de Mallorca, Spain (Zambrini, R.; Hoyuelos, M.) |
| Abstract | We consider a self-defocusing model for a Kerr medium in a planar resonator, which takes into account the vectorial character of the radiation field. For an intensity of the pump beam larger than a given threshold, a y polarized transverse stripe pattern appears. We analyze the spatial behavior of quantum fluctuations around this inhomogeneous steady state, using a Langevin treatment based on Wigner representation. The model is continuous, so that we avoid any restriction to a reduced number of spatial modes. The spatial distribution of the quantum fluctuations around the roll-pattern is dominated by the neutral (or Goldstone) mode, corresponding to rigid spatial displacements of the pattern. The spatial configuration of the field immediately outside the cavity input/output mirror depends on the time window over which fluctuations are averaged: only when the time window is on the order of the cavity lifetime the output field fluctuations are qualitatively similar to that of the intracavity field. We show the existence of a strong anticorrelation between the quantum fluctuations of the intensity of the x-polarized pump and the y-polarized field. We check the possibility to use a Kerr cavity like a quantum non-demolition device, which uses the tilted waves, corresponding in the far field to the y-polarized stripe pattern, as a meter to measure the intensity fluctuation of the pump beam. |
| File Size | 102273 |
| File Format | |
| ISBN | 0780363183 |
| DOI | 10.1109/IQEC.2000.907769 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2000-09-10 |
| Publisher Place | France |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Fluctuations Polarization Mirrors Laser excitation Predictive models Noise measurement Noise level |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|