Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yung-Fu Tsai Kay-Soon Low |
| Copyright Year | 2014 |
| Description | Author affiliation: Satellite Res. Centre (SaRC), Nanyang Technol. Univ. (NTU), Singapore, Singapore (Yung-Fu Tsai; Kay-Soon Low) |
| Abstract | In past decade, the GPS plays an important role in many navigation applications. In some cases, the GPS is the only device providing navigation service. For safety-of-life user, GPS alone cannot provide the stringent performance in accuracy, integrity and availability. As a result, several SBAS (Satellite Based Augmentation System) systems have been developed to provide corrections and assistances to GPS users. The notably SBAS systems are U.S. WAAS (Wide Area Augmentation System), Europe EGNOS (European Geostationary Navigation Overlay Service) and Japanese MSAS (Multi-functional Satellite Augmentation System), In addition, India and Russia have engaged in the deployment and development of SBAS system, named GAGAN (GPS Aided Geo Augmented Navigation) and SDCM (System of Differential Correction and Monitoring). Also, other regions in the world currently proceed feasibility studies on SBAS. For instance, SACCSA (The Augmentation Solution for the Caribbean, Central America and South America) project in Latin-America, ASAS (African Satellite Augmentation System) in Africa and Malaysian SBAS. SBAS broadcast the correction for ionosphere delay and satellite clock. By using these corrections, the user position accuracy can improve to several meters or better. In Singapore, Changi airport is one of busiest airport in the world, and it handled more than fifty million passengers in 2012. Additionally, Singapore is located in the equatorial region so that the ionosphere activities are dramatic. Currently, there is no SBAS service in the Singapore region. The objective of this paper is to propose a fusion scheme to exploit the correction and integrity monitoring messages from nearby two SBAS systems, GAGAN and MSAS and then provide a reliable correction for GPS users. Singapore is not located in the service volume of either GAGAN or MSAS. Because of the lack of SBAS monitoring stations, the navigation quality in Singapore region cannot be assured through either GAGAN or MSAS. The messages from both SBAS systems can be still received. Therefore, it is desired to investigate how messages from GAGAN and MSAS can be utilized to enhance the performance for GPS user. Then, its goal is to ensure a smooth transition and assured navigation performance in this region. In the paper, both GAGAN and MSAS messages are firstly received and analyzed for the assessment of the signal quality. And then, a comparison with the requirements at different phases of flight is made. A synergistic integration of the messages from by GAGAN and MSAS in Singapore is developed to pave a way for the future regional augmentation system implementation. An extrapolation scheme is proposed to expand the coverage of ionospheric delay correction messages from GAGAN and MSAS. All proposed fusion and extrapolation schemes are assessed by using real data to evaluate performance. The result shows that our approach has reliable performance compared to a surveying-grade receiver. |
| Sponsorship | IEEE Aerosp. Electron. Syst. Soc. |
| Starting Page | 686 |
| Ending Page | 691 |
| File Size | 2203726 |
| Page Count | 6 |
| File Format | |
| ISSN | 21533598 |
| e-ISBN | 9781479933204 |
| DOI | 10.1109/PLANS.2014.6851433 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2014-05-05 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Satellites Satellite broadcasting Global Positioning System Accuracy Delays Monitoring Ionosphere GPS SBAS MSAS GAGAN Singapore Region |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|