Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Snavely, A. Carter, L. Boisseau, J. Majumdar, A. Kang Su Gatlin Mitchell, N. Feo, J. Koblenz, B. |
Copyright Year | 1998 |
Description | Author affiliation: SDSC/UCSD (Snavely, A.) |
Abstract | The Tera MTA is a revolutionary commercial computer based on a multithreaded processor architecture. In contrast to many other parallel architectures, the Tera MTA can effectively use high amounts of parallelism on a single processor. By running multiple threads on a single processor, it can tolerate memory latency and to keep the processor saturated. If the computation is sufficiently large, it can benefit from running on multiple processors. A primary architectural goal of the MTA is that it provide scalable performance over multiple processors. This paper is a preliminary investigation of the first multi-processor Tera MTA. In a previous paper [1] we reported that on the kernel NAS 2 benchmarks [2], a single-processor MTA system running at the architected clock speed would be similar in performance to a single processor of the Cray T90. We found that the compilers of both machines were able to find the necessary threads or vector operations, after making standard changes to the random number generator. In this paper we update the single-processor results in two ways: we use only actual clock speeds, and we report improvements given by further tuning of the MTA codes. We then investigate the performance of the best single-processor codes when run on a two-processor MTA, making no further tuning effort. The parallel efficiency of the codes range from 77% to 99%. An analysis shows that the "serial bottlenecks" -- unparallelized code sections and the cost of allocating and freeing the parallel hardware resources -- account for less than a percent of the runtimes. Thus, Amdahl's Law needn't take effect on the NAS benchmarks until there are hundreds of processors running thousands of threads. Instead, the major source of inefficiency appears to be an imperfect network connecting the processors to the memory. Ideally, the network can support one memory reference per instruction. The current hardware has defects that reduce the throughput to about 85% of this rate. Except for the EP benchmark, the tuned codes issue memory references at nearly the peak rate of one per instruction. Consequently, the network can support the memory references issued by one, but not two, processors. As a result, the parallel efficiency of EP is near- perfect, but the others are reduced accordingly. Another reason for imperfect speedup pertains to the compiler. While the definition of a thread in a single processor or multi-processor mode is essentially the same, there is a different implementation and an associated overhead with running on multiple processors. We characterize the overhead of running "frays" (a collection of threads running on a single processor) and "crews" (a collection of frays, one per processor.) |
Starting Page | 4 |
Ending Page | 4 |
File Size | 267506 |
Page Count | 1 |
File Format | |
ISBN | 081868707X |
DOI | 10.1109/SC.1998.10049 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 1998-11-07 |
Access Restriction | Subscribed |
Rights Holder | Association for Computing Machinery, Inc. (ACM) |
Subject Keyword | Yarn Clocks Hardware Computer architecture Parallel architectures Parallel processing Delay Kernel Random number generation Costs parallelizing compilers Tera multithreaded architecture performance evaluation NAS parallel benchmarks scalability analysis performance tuning |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|