Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yoonmyung Lee Giridhar, B. Foo, Z. Sylvester, D. Blaauw, D. |
| Copyright Year | 2011 |
| Description | Author affiliation: University of Michigan, Ann Arbor, MI (Yoonmyung Lee; Giridhar, B.; Foo, Z.; Sylvester, D.; Blaauw, D.) |
| Abstract | Recent work in ultra-low-power sensor platforms has enabled a number of new applications in medical, infrastructure, and environmental monitoring. Due to their limited energy storage volume, these sensors operate with long idle times and ultra-low standby power ranging from 10s of nW down to 100s of pW [1–2]. Since radio transmission is relatively expensive, even at the lowest reported power of 0.2mW [3], wireless communication between sensor nodes must be performed infrequently. Accurate measurement of the time interval between communication events (i.e. the synchronization cycle) is of great importance. Inaccuracy in the synchronization cycle time results in a longer period of uncertainty where sensor nodes are required to enable their radios to establish communication (Fig. 2.7.1), quickly making radios dominate the energy budget. Quartz crystal oscillators and CMOS harmonic oscillators exhibit very small sensitivity to supply voltage and temperature [4] but cannot be used in the target application space since they operate at very high frequencies and exhibit power consumption that is several orders of magnitude larger (>300nW) than the needed idle power. A gate-leakage-based timer was proposed [5] that leveraged small gate leakage currents to achieve power consumption within the required budget (< 1nW). However, this timer incurs high RMS jitter (1400ppm) and temperature sensitivity (0.16%/ºC). A 150pW program-and-hold timer was proposed [6] to reduce temperature sensitivity but its drifting clock frequency limits its use for synchronization. The quality of a timer is not captured well by RMS jitter since it ignores the averaging of jitter over multiple timer clock periods in a single synchronization cycle. Instead, we propose the uncertainty in a single synchronization cycle of length T as new metric and use this synchronization uncertainty (SU) to evaluate different timer approaches. The timer period is a random variable X(n), with mean and sigma, μ and σ. Given a synchronization cycle time T, consisting of N timer periods, we define SU as the standard deviation of T as given by √T/μ × σ, assuming X(n) is Gaussian. Note that a smaller clock period increases N and results in more averaging and a lower SU with fixed jitter (σ/μ). |
| Starting Page | 46 |
| Ending Page | 48 |
| File Size | 3265178 |
| Page Count | 3 |
| File Format | |
| ISBN | 9781612843032 |
| ISSN | 01936530 |
| e-ISBN | 9781612843025 |
| DOI | 10.1109/ISSCC.2011.5746213 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-02-20 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Temperature sensors Synchronization Temperature measurement Jitter Uncertainty Leakage current Logic gates |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|