Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Haverkort, B.R. |
| Copyright Year | 2009 |
| Description | Author affiliation: Embedded Systems Institute & University of Twente, P.O. Box 513, 5600 MB Eindhoven, Netherlands (Haverkort, B.R.) |
| Abstract | Since the 1970's, the scientific field of model-based performance and dependability evaluation has been flourishing. Starting with breakthroughs in the area of closed queueing networks in the 1970's, the 1980's brought new results on state-based methods, such as those for stochastic Petri nets and matrix-geometric methods, whereas the 1990's introduced process algebra-type models. Since the turn of the century, techniques for stochastic model checking are being introduced, to name just a few major developments. The applicability of all these techniques has been boosted enormously through Moore's law; these days, stochastic models with tens of millions of states can easily be dealt with on a standard desktop or laptop computer. A dozen or so dedicated conferences serve the scientific field, as well as a number of scientific journals. However, for the field as a whole to make progress, it is important to step back, and to consider how all these as-such important developments have really changed the way computer and communication systems are being designed and operated. The answer to this question is most probable rather disappointing. I do observe a rather strong discrepancy between what is being published in top conferences and journals, and what is being used in real practice. Blaming industry for this would be too easy a way out. Currently, we do not see model-based performance and dependability evaluation as key step in the design process for new computer and communication systems. Moreover, in the exceptional cases that we do see performance and dependability evaluation being part of a design practice, the employed techniques are not the ones referred to above, but instead, depending on the application area, techniques like discrete-event simulation on the basis of hand-crafted simulation programs (communication protocols), or techniques based on (non-stochastic) timed-automata or timeless behavioral models (embedded systems). In all these cases, however, the scalability of the employed methods, also for discrete-event simulation, forms a limiting factor. Still, industry is serving the world with ever better, faster and more impressive computing machinery and software! What went wrong? When and why did ”our field” land on a side track? In this presentation I will argue that it is probably time for a change, for a change toward a new way of looking at performance and dependability models and evaluation of computer and communication systems, a way that is, if you like, closer to the way physicists deal with very large scale systems, by applying different type of abstractions. In particular, I will argue that computer scientist should “stop counting things”. Instead, a more fluid way of thinking about system behavior is deemed to be necessary to be able to evaluate the performance and dependability of the next generation of very large scale omnipresent systems. First successes of such new approaches have recently been reported. Will be witness a paradigm shift in the years to come? |
| Starting Page | 1 |
| Ending Page | 1 |
| File Size | 29572 |
| Page Count | 1 |
| File Format | |
| ISBN | 9781424449279 |
| ISSN | 15267539 |
| DOI | 10.1109/MASCOT.2009.5363146 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-09-21 |
| Publisher Place | United Kingdom |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Stochastic processes Discrete event simulation Large-scale systems Petri nets Moore's Law Portable computers Process design Application software Computational modeling Protocols |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|