Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Zhi Zeng Xin Li Xiaohong Ma Qiang Ji |
| Copyright Year | 2008 |
| Description | Author affiliation: Rensselaer Polytech. Inst., Troy, NY (Zhi Zeng; Qiang Ji) || Dalian Univ. of Technol., Dalian (Xin Li; Xiaohong Ma) |
| Abstract | Auditory data provide many contextual cues about the crucial content of environments around. The goal of audio based context recognition is to equip the sensing devices with classification algorithms that can automatically classify the environments into pre-defined classes according to the extracted auditory features. In this paper, we first extract various features from the audio signals. We then perform a feature analysis to identify a feature ensemble to optimally classify different contexts. To achieve an efficient and timely online classification, a coarse-to-fine training scheme is adopted, where for each context three HMMs are trained by feature ensembles of different complexities. During online recognition, we start with coarse HMMs (with fewest numbers of features) and progressively apply finer models if necessary. Experiments show that this strategy results in significant saving in computational power with only negligible lose in context recognition accuracy. |
| Starting Page | 1 |
| Ending Page | 4 |
| File Size | 1102290 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781424421749 |
| ISSN | 10514651 |
| DOI | 10.1109/ICPR.2008.4761905 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-12-08 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Hidden Markov models Feature extraction Cepstral analysis Support vector machines Support vector machine classification Data mining Monitoring Mel frequency cepstral coefficient Recurrent neural networks Pattern recognition |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Vision and Pattern Recognition |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|