Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Si-Yao Fu Guo-Sheng Yang Zeng-Guang Hou |
| Copyright Year | 2010 |
| Description | Author affiliation: Key laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, P.O. Box 2728, Beijing 100190, China (Zeng-Guang Hou) || School of Information and Engineering, the Central University of Nationalities, Beijing 100081, China (Si-Yao Fu; Guo-Sheng Yang) |
| Abstract | Local image features have been proven to be a powerful way to describe pattern of interest, both from single objects and complex scenes. While learning from images represented by local features is challenging, recent publications and developments in object recognition has shown that significant performance achievements can be achieved by carefully combining multi-level, coarse-to-fine, sparsely distributed feature encodings [10], and kernel based learning methods, which defines a generalized similarity measure among data using multiple kernel functions instead of a single one, also known as multiple kernel learning (MKL). In this paper we show that the Kernel ICA descriptors based MKL supervised learning approach perform better than other descriptors for object recognition, since the ICA-based representation is localized. In low-level feature extraction, ICA produces independent image bases that emphasize edge information in the image data. In high-level classification, MKL classifies the ICA features as discriminative components. We demonstrate our algorithm on different databases for recognition tasks, showing that the proposed method is accurate and more efficient than current approaches. |
| Starting Page | 1 |
| Ending Page | 6 |
| File Size | 721756 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781424469161 |
| ISSN | 10987576 |
| e-ISBN | 9781424469185 |
| DOI | 10.1109/IJCNN.2010.5596572 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-07-18 |
| Publisher Place | Spain |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Kernel Support vector machines Databases Training Face Feature extraction Principal component analysis |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|