Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Bo Liu Qingfu Zhang Fernandez, F.V. Gielen, G. |
| Copyright Year | 2012 |
| Description | Author affiliation: IMSE, CSIC and University of Sevilla, Spain (Fernandez, F.V.) || ESAT-MICAS, Katholieke Universiteit Leuven, Belgium (Bo Liu; Gielen, G.) || School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K. (Qingfu Zhang) |
| Abstract | Surrogate model assisted evolutionary algorithms are receiving much attention for the solution of optimization problems with computationally expensive function evaluations. For small scale problems, the use of a Gaussian Process surrogate model and prescreening methods has proven to be effective. However, each commonly used prescreening method is only suitable for some types of problems, and the proper prescreening method for an unknown problem cannot be stated beforehand. In this paper, the four existing prescreening methods are analyzed and a new method, called self-adaptive lower confidence bound (ALCB), is proposed. The extent of rewarding the prediction uncertainty is adjusted on line based on the density of samples in a local area and the function properties. The exploration and exploitation ability of prescreening can thus be better balanced. Experimental results on benchmark problems show that ALCB has two main advantages: (1) it is more general for different problem landscapes than any of the four existing prescreening methods; (2) it typically can achieve the best result among all available prescreening methods. |
| Starting Page | 1 |
| Ending Page | 6 |
| File Size | 1158039 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781467315104 |
| e-ISBN | 9781467315098 |
| e-ISBN | 9781467315081 |
| DOI | 10.1109/CEC.2012.6256585 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2012-06-10 |
| Publisher Place | Australia |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Uncertainty Optimization Evolutionary computation Predictive models Databases Computational modeling Vectors |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|