Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Osaretin, I. Blackwell, W. Allen, G. Conrad, S. Galbraith, C. Leslie, R. Osborn, W. Reid, B. Retherford, L. Scarito, M. Semisch, C. Shields, M. Thompson, E. Toher, D. Townzen, D. Wezalis, R. Wight, K. Erickson, N. |
| Copyright Year | 2013 |
| Description | Author affiliation: Lincoln Lab., Massachusetts Inst. of Technol., Lexington, MA, USA (Osaretin, I.; Blackwell, W.; Allen, G.; Conrad, S.; Galbraith, C.; Leslie, R.; Osborn, W.; Reid, B.; Retherford, L.; Scarito, M.; Semisch, C.; Shields, M.; Thompson, E.; Toher, D.; Townzen, D.; Wezalis, R.; Wight, K.) || Univ. of Massachusetts, Amherst, MA, USA (Erickson, N.) |
| Abstract | Summary form only given. A novel compact radiometer observing nine channels near the 118.75GHz oxygen absorption line is introduced. The radiometer is designed as the payload for the Micro-sized Microwave Atmospheric Satellite (MicroMAS). MicroMAS is a dual-spinning 3U CubeSat that aims to address the need for low-cost, mission-flexible, and rapidly deployable spaceborne sensors. The focus of the current MicroMAS mission is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit. As a low cost platform, MicroMAS offers the potential to deploy multiple satellites, in a constellation, that can provide near-continuous views of severe weather. The existing architecture of few, high-cost platforms, infrequently view the same earth area which can miss rapid changes in the strength and direction of evolving storms thus degrading forecast accuracy. MicroMAS is a scalable CubeSat-based system that will pave the path towards improved revisit rates over critical earth regions, and achieve state-of-the-art performance relative to current systems with respect to spatial, spectral, and radiometric resolution. The current MicroMAS mission will demonstrate the viability of CubeSats for high-fidelity environmental monitoring and space control that would provide profound advances by reducing costs, by at least an order of magnitude, while increasing robustness to launch and sensor failures. This discourse focuses on the compact radiometer designed for this CubeSat mission. The radiometer is housed in a 1U (10 × 10 × 10 cm) payload section of the 3U (10 × 10 × 30 cm) MicroMAS CubeSat. The payload is scanned about the spacecraft's velocity vector as the spacecraft orbits the earth, creating crosstrack scans across the earth's surface. The first portion of the radiometer comprises a horn-fed reflector antenna, with a full-width at half-maximum (FWHM) beamwidth of 2.4°. Hence, the scanned beam has an approximate footprint diameter of 20Km at nadir incidence from a nominal altitude of 500Km. The antenna system is designed for a minimum 95% beam efficiency. The next stage of the radiometer consists of superheterodyne front-end receiver electronics with single sideband (SSB) operation. The front-end electronics includes an RF preamplifier module, a mixer module, and a local oscillator (LO). The RF preamplifier module contains a low noise RF amplifier and a weakly coupled noise diode for radiometric calibration. The mixer module comprises a HEMT diode mixer and an IF preamplifier MMIC. The LO is obtained using a 30GHz dielectric resonant oscillator (DRO) and a resistive diode tripler to obtain a 90GHz LO frequency. A key technology development in the MicroMAS radiometer system is the ultra-compact intermediate frequency processor (IFP) module for channelization, detection, and analog-to-digital conversion. The antenna system, RF front-end electronics, and backend IF electronics are highly integrated, miniaturized, and optimized for low-power operation. The payload also contains microcontrollers, with one of such being in the payload interface module (PIM), to package and transmit radiometric and housekeeping data to the spacecraft bus. A voltage regulator module (VRM) was also designed for the payload to convert the input bus voltage to the required voltages for the payload electronics. The payload requires 3W (average) of power. The MicroMAS payload flight unit is currently being developed by MIT Lincoln Laboratory, and the spacecraft bus flight unit being developed by the MIT Space Systems Laboratory and the MIT Department of Earth and Planetary Sciences for a 2014 launch to be provided by the NASA CubeSat Launch Initiative program. |
| Sponsorship | IEEE Antennas Propag. Soc. |
| Starting Page | 1 |
| Ending Page | 1 |
| File Size | 226323 |
| Page Count | 1 |
| File Format | |
| ISBN | 9781467347761 |
| e-ISBN | 9781467347785 |
| DOI | 10.1109/USNC-URSI-NRSM.2013.6525009 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2013-01-09 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Earth Space vehicles Radio frequency Satellites Microwave radiometry Payloads |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|