Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | DePrince, A.E. Hammond, J.R. |
Copyright Year | 2011 |
Abstract | The iterative solution of the coupled-cluster with single and double excitations (CCSD) equations is a very time-consuming component of the ``gold standard'' in quantum chemistry, the CCSD(T) method. In an effort to accelerate accurate quantum mechanical calculations, we explore two implementation strategies for the iterative solution of the CC equations on graphics procesing units (GPUs). We consider a communication-avoiding algorithm for the spin-free coupled cluster doubles (CCD) equations followed by a low-storage algorithm for the spin-free CCSD equations. In the communication-avoiding algorithm, the entire iterative procedure for the CCD method is performed on the GPU, resulting in accelerations of a factor of 4-5 relative to the pure CPU algorithm. The low-storage CCSD algorithm requires that a minimum of $4o^2v^2+2ov$ elements be stored on the device, where $o$ and $v$ represent the number of orbitals occupied and unoccupied in the reference configuration, respectively. The algorithm masks the transfer time for copying large amounts of data to the GPU by overlapping GPU and CPU computations. The per-iteration costs of this hybrid GPU/CPU algorithm are up to 4.06 times less than those of the pure CPU algorithm and up to 10.63 times less than those of the CCSD implementation found in the {\small Molpro} electronic structure package. These results provide insight into how to organize communication and computation as to maximize utilization of a GPU and multicore CPU at the same time. |
Starting Page | 131 |
Ending Page | 140 |
File Size | 241030 |
Page Count | 10 |
File Format | |
ISBN | 9781457706356 |
DOI | 10.1109/SAAHPC.2011.28 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 2011-07-19 |
Publisher Place | USA |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Charge coupled devices Multicore CUDA Coupled-cluster Tensile stress Multicore processing Buffer storage Quantum chemistry Hardware Equations Graphics processing unit |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|