Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Cakra, Yahya Eru Distiawan Trisedya, Bayu |
| Copyright Year | 2015 |
| Description | Author affiliation: Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia (Cakra, Yahya Eru; Distiawan Trisedya, Bayu) |
| Abstract | Stock price prediction is a difficult task, since it very depending on the demand of the stock, and there is no certain variable that can precisely predict the demand of one stock each day. However, Efficient Market Hypothesis (EMH) said that stock price also depends on new information significantly. One of many information sources is people's opinion in social media. People's opinion about products from certain companies may determine the company's reputation and thus affecting people's decision to buy the stock of the company. When using opinion as primary data, it is necessary to make a suitable analysis of it. A famous example using opinion as data is sentiment analysis. Sentiment analysis is a process to determine emotion/feeling within people opinion about something, in this case products of some companies. There are some researches about sentiment analysis used to predict the stock prices. Bollen on his research concludes that people opinion on social media such as Twitter can predict DJIA value with 87.6% accuracy. This shows that there is a relation between sentiment analysis and stock prices. Our purpose on this research is to predict the Indonesian stock market using simple sentiment analysis. Naive Bayes and Random Forest algorithm are used to classify tweet to calculate sentiment regarding a company. The results of sentiment analysis are used to predict the company stock price. We use linear regression method to build the prediction model. Our experiment shows that prediction models using previous stock price and hybrid feature as predictor gives the best prediction with 0.9989 and 0.9983 coefficient of determination. |
| Starting Page | 147 |
| Ending Page | 154 |
| File Size | 335554 |
| Page Count | 8 |
| File Format | |
| e-ISBN | 9781509003631 |
| DOI | 10.1109/ICACSIS.2015.7415179 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-10-10 |
| Publisher Place | Indonesia |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Support vector machines Sentiment analysis Linear regression Supervised learning Companies Vegetation Twitter Classification algorithms Stock price |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|