Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yong Xia Yanning Zhang |
| Copyright Year | 2014 |
| Description | Author affiliation: Shaanxi Key Lab. of Speech & Image Inf. Process., Northwestern Polytech. Univ., Xi'an, China (Yong Xia; Yanning Zhang) |
| Abstract | As an essential step in brain studies, measuring the distribution of major brain tissues, including gray matter, white matter and cerebrospinal fluid (CSF), using magnetic resonance imaging (MRI) has attracted extensive research efforts over the past years. Many brain tissue differentiation methods resulted from these efforts are based on the finite statistical mixture model, which however, in spite of its computational efficiency, is not strictly followed due to the intrinsically limited quality of MRI data and may lead to less accurate results. In this paper, a novel large-scale variational Bayesian inference (LS-VBI) learning algorithm is proposed for automated brain MRI voxels classification. To cope with the complexity and dynamic nature of MRI data, this algorithm uses a large number of local statistical models, in each of which all statistical parameters are assumed to be random variables sampled from conjugate prior distributions. Those models are learned using variational Bayesian inference and combined to predict the class label of each brain voxel. This algorithm has been evaluated against several state-of-the-art brain tissue segmentation methods on both synthetic and clinical brain MRI data sets. Our results show that the proposed algorithm can classify brain voxels more effectively and provide more precise distribution of major brain tissues. |
| Starting Page | 59 |
| Ending Page | 64 |
| File Size | 1979944 |
| Page Count | 6 |
| File Format | |
| e-ISBN | 9781479953530 |
| DOI | 10.1109/SPAC.2014.6982657 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2014-10-18 |
| Publisher Place | China |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Variational Bayes inference Image segmentation Magnetic resonance imaging Probabilistic brain atlas Brain models Inference algorithms Data models Classification algorithms |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|