Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Nicolae, B. |
| Copyright Year | 2015 |
| Description | Author affiliation: IBM Res., Dublin, Ireland (Nicolae, B.) |
| Abstract | Scientific and data-intensive computing have matured over the last couple of years in all fields of science and industry. Their rapid increase in complexity and scale has prompted ongoing efforts dedicated to reach exascale infrastructure capability by the end of the decade. However, advances in this context are not homogeneous: I/O capabilities in terms of networking and storage are lagging behind computational power and are often considered a major limitation that that persists even at petascale [1]. A particularly difficult challenge in this context are collective I/O access patterns (which we henceforth refer to as collective checkpointing) where all processes simultaneously dump large amounts of related data simultaneously to persistent storage. This pattern is often exhibited by large-scale, bulk-synchronous applications in a variety of circumstances, e.g., when they use checkpoint-restart fault tolerance techniques to save intermediate computational states at regular time intervals [2] or when intermediate, globally synchronized results are needed during the lifetime of the computation (e.g. to understand how a simulation progresses during key phases). Under such circumstances, a decoupled storage system (e.g. a parallel file system such as GPFS [3] or a specialized storage system such as BlobSeer [4]) does not provide sufficient I/O bandwidth to handle the explosion of data sizes: for example, Jones et al. [5] predict dump times in the order of several hours. In order to overcome the I/O bandwidth limitation, one potential solution is to equip the compute nodes with local storage (i.e., HDDs, SSDs, NVMs, etc.) or use I/O forwarding nodes. Using this approach, a large part of the data can be dumped locally, which completely avoids the need to consume and compete for the I/O bandwidth of a decoupled storage system. However, this is not without drawbacks: the local storage devices or I/O forwarding nodes are prone to failures and as such the data they hold is volatile. Thus, a popular approach in practice is to wait until the local dump has finished, then let the application continue while the checkpoints are in turn dumped to a parallel file system in background. Such a straightforward solution can be effective at hiding the overhead incurred to due I/O bandwidth limitations, but this not necessarily the case: it may happen that there is not enough time to fully flush everything to the parallel file system before the next collective checkpoint request is issued. In fact, this a likely scenario with growing scale, as the failure rate increases, which introduces the need to checkpoint at smaller intervals in order to compensate for this effect. Furthermore, a smaller checkpoint interval also means local dumps are frequent and as such their overhead becomes significant itself. |
| Starting Page | 660 |
| Ending Page | 661 |
| File Size | 491292 |
| Page Count | 2 |
| File Format | |
| ISBN | 9781467378123 |
| e-ISBN | 9781467378130 |
| DOI | 10.1109/HPCSim.2015.7237113 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-07-20 |
| Publisher Place | Netherlands |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Checkpointing Context Scalability Computational modeling Redundancy Data resilience Deduplication Access pattern awareness Asynchronous flushing Redundancy management Resilience Collective I/O scalability High availability Bandwidth Replication |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|