Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Nefedova, Y. Shevtsova, I. |
| Copyright Year | 2010 |
| Description | Author affiliation: Lomonosov Moscow State University, 119991 Leninskie Gory, GSP-1, Russia (Nefedova, Y.; Shevtsova, I.) |
| Abstract | The sums of large number of independent random variables are very popular mathematical models for many real objects. The central limit theorem states that the distribution of such sum must approximately fit the normal distribution under a broad range of realistic conditions. The normal approximation is valid as long as the tails of the distribution are not too heavy, so that the variance were finite. Moreover, if the random summands have the moments of order higher than 2, then the normal approximation becomes more precise. The most interesting case is when the moment order lies between 2 and 3: the central limit theorem is still valid, but the random summands have so heavy tails that the third-order moment does not exist. Such heavy-tailed distributions are used, for example, for the analysis of the telecommunication system traffic. The present paper is devoted to the accuracy estimation of the normal approximation just in that case. We will present two-sided bounds for the constant in the Berry-Esseen inequality for Poisson random sums of independent identically distributed random variables with the finite moment order that lies between 2 and 3. The lower estimates obtained for the first time. We will improve the lower estimates and prove non-uniform estimates. |
| Starting Page | 1141 |
| Ending Page | 1144 |
| File Size | 336847 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781424472857 |
| ISSN | 2157023X |
| e-ISBN | 9781424472864 |
| DOI | 10.1109/ICUMT.2010.5676523 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-10-18 |
| Publisher Place | Russia |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Upper bound Central limit theorem Insurance Tin Poisson random sum Random variables Berry-Esseen inequality Approximation methods Compounds Mathematical model Non-uniform estimate |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|