Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Jiao Yang Sun Guangkai Li Guanghai Zhao Yubo Tian Fengbin |
| Copyright Year | 2010 |
| Description | Author affiliation: Institute of Information Science & Engineering, Hebei University of science and technology, Shijiazhuang, China (Jiao Yang; Sun Guangkai; Zhao Yubo; Tian Fengbin) || China Special Equipment Inspection and Research Institute, Beijing, China (Li Guanghai) |
| Abstract | For the complexity of calculating and analyzing the guided wave propagation and defect reflection in steel pipes, and the instructional role on studying the characters of T(0,1) mode guided wave to experimental studies, a method associating guided wave theory with numerical solution was applied to simulate T(0,1) mode guided wave propagation and defect reflection in steel pipes by building models, imposing surface loads, and calculating in the ANSYS program, and the characters of T(0,1) mode guided wave were studied. The results of numerical calculation prove that: the T(0,1)mode guided wave was basically non-dispersive in reasonable frequencies, the attenuation trend of amplitude was exponential and the amplitude was basically keeping stable after propagating some distance, the T(0,1) mode guide wave was sensitive to both inner and outer circumferential defects. The reflection coefficient of T(0,1) mode guided wave increases linearly with the increase of circumferential length and depth of defects. When defect depth is not through-thickness, axial length has more influence on reflection coefficient. When defect depth is through-thickness, the influence of axial length to reflection coefficient is basically omitted. |
| File Size | 631097 |
| File Format | |
| ISBN | 9781424472352 |
| e-ISBN | 9781424472376 |
| DOI | 10.1109/ICCASM.2010.5619082 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-10-22 |
| Publisher Place | China |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Guided wave Numerical simulation Defect Reflection Finite difference methods |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|