Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IEEE Xplore Digital Library |
---|---|
Author | Montrose, M.I. |
Copyright Year | 1999 |
Description | Author affiliation: Montrose Compliance Services Inc., Santa Clara, CA, USA (Montrose, M.I.) |
Abstract | This paper presents, with a solid conclusion, practical, hands-on applied EMC information for engineers that can be put to immediate use without relying on the mathematics of Maxwell's equations. An examination is made to determine if the physical placement of decoupling capacitors makes a significant difference in the development and propagation of radiated emissions from a printed circuit board (PCB) when used with actual, high-speed components. The focus is on what happens on both the top and bottom layers of a PCB, regardless of whether the board is single-sided, double-sided or multilayer. This paper complements existing research that investigates decoupling using simulation. Correlation between simulation and actual results is supported in this paper. A problem with simulation is that results calculated sometimes cannot take into consideration common-mode RF energy developed by components switching multiple outputs under maximum capacitive load, consuming a large amount of inrush current or impulse currents from switching cross-conduction. Common-mode energy cannot always be efficiently simulated at this time, thus causing the possibility of inaccurate assumptions regarding anticipated radiated emissions from a PCB layout. Behavioral models used for simulation are usually (theoretically) perfect and may not represent actual design parameters due to parasitics and other electromagnetic effects that cannot be easily calculated or anticipated. RF energy is developed due to digital components switching logic states. A voltage gradient on the power and ground planes between components causes common-mode EMI to be observed on interconnects and other radiating structures. Decoupling capacitors are provided to minimize voltage gradients, along with minimizing RF switching energy injected into the power distribution network and distributed throughout the entire PCB. The magnitude of radiated energy, related to decoupling capacitors is investigated in this paper, based on the physical location to digital components. In addition, common engineering problems in determining an optimal decoupling capacitor value are presented, with regard to both time and frequency domain analysis. |
Starting Page | 423 |
Ending Page | 428 |
File Size | 717110 |
Page Count | 6 |
File Format | |
ISBN | 078035057X |
DOI | 10.1109/ISEMC.1999.812941 |
Language | English |
Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher Date | 1999-08-02 |
Publisher Place | USA |
Access Restriction | Subscribed |
Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subject Keyword | Capacitors Radio frequency Circuit simulation Voltage Solids Electromagnetic compatibility Mathematics Maxwell equations Printed circuits Nonhomogeneous media |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|