Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Elhamifar, E. Vidal, R. |
| Copyright Year | 2011 |
| Description | Author affiliation: Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218, USA (Elhamifar, E.; Vidal, R.) |
| Abstract | In many problems in computer vision, data in multiple classes lie in multiple low-dimensional subspaces of a high-dimensional ambient space. However, most of the existing classification methods do not explicitly take this structure into account. In this paper, we consider the problem of classification in the multi-sub space setting using sparse representation techniques. We exploit the fact that the dictionary of all the training data has a block structure where the training data in each class form few blocks of the dictionary. We cast the classification as a structured sparse recovery problem where our goal is to find a representation of a test example that uses the minimum number of blocks from the dictionary. We formulate this problem using two different classes of non-convex optimization programs. We propose convex relaxations for these two non-convex programs and study conditions under which the relaxations are equivalent to the original problems. In addition, we show that the proposed optimization programs can be modified properly to also deal with corrupted data. To evaluate the proposed algorithms, we consider the problem of automatic face recognition. We show that casting the face recognition problem as a structured sparse recovery problem can improve the results of the state-of-the-art face recognition algorithms, especially when we have relatively small number of training data for each class. In particular, we show that the new class of convex programs can improve the state-of-the-art face recognition results by 10% with only 25% of the training data. In addition, we show that the algorithms are robust to occlusion, corruption, and disguise. |
| Starting Page | 1873 |
| Ending Page | 1879 |
| File Size | 776325 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781457703942 |
| ISSN | 10636919 |
| e-ISBN | 9781457703959 |
| DOI | 10.1109/CVPR.2011.5995664 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2011-06-20 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Training data Dictionaries Face recognition Optimization Face Computer vision Vectors |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|